Methanol Equilibrium Curves of Power Transformer Oil–Paper Insulation
Piotr Przybylek ()
Additional contact information
Piotr Przybylek: Institute of Electric Power Engineering, Poznan University of Technology, Piotrowo 3A, 61-138 Poznan, Poland
Energies, 2024, vol. 17, issue 21, 1-15
Abstract:
To eliminate the problem of the aging of cellulose insulation in the manufacturing stage, a new drying method is being developed based on the use of methanol vapors. Previous studies have shown that the complete removal of methanol from the cellulose insulation after the drying process is very difficult. Therefore, it is necessary to check how the remaining methanol after drying affects the properties of both the cellulose materials and mineral oil. To conduct such studies, it is necessary to know the methanol content in oil that can be expected depending on its initial content in the cellulose materials and the temperature of the insulation system. Therefore, the main goal of this work is to develop methanol equilibrium curves for oil–paper insulation. To achieve the assumed goal, three-stage studies were conducted. A gas chromatograph equipped with a flame ionization detector was used in all stages of these studies. The gas partition coefficient between oil and air was determined for a temperature of 70 °C. The key experimental finding was the development of methanol equilibrium curves for oil–paper insulation. Thanks to this achievement, it is possible to estimate the methanol content in cellulose materials and mineral oil depending on the insulation temperature. Such data are necessary, among others, to plan appropriate studies aimed at assessing the impact of methanol content on the dielectric and physicochemical properties of these materials, important from the point of view of the operation of power transformers.
Keywords: power transformer; oil–paper insulation; drying; methanol; equilibrium; gas chromatography; flame ionization detector (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/21/5333/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/21/5333/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:21:p:5333-:d:1507096
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().