EconPapers    
Economics at your fingertips  
 

A Day-Ahead Economic Dispatch Method for Renewable Energy Systems Considering Flexibility Supply and Demand Balancing Capabilities

Zheng Yang, Wei Xiong, Pengyu Wang, Nuoqing Shen () and Siyang Liao
Additional contact information
Zheng Yang: Central China Branch of State Grid Corporation of China, Wuhan 430077, China
Wei Xiong: Central China Branch of State Grid Corporation of China, Wuhan 430077, China
Pengyu Wang: School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China
Nuoqing Shen: School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China
Siyang Liao: School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China

Energies, 2024, vol. 17, issue 21, 1-20

Abstract: The increase in new energy grid connections has reduced the supply-side regulation capability of the power system. Traditional economic dispatch methods are insufficient for addressing the flexibility limitations in the system’s balancing capabilities. Consequently, this study presents a day-ahead scheduling method for renewable energy systems that balances flexibility and economy. This approach establishes a dual-layer optimized scheduling model. The upper-layer model focuses on the economic efficiency of unit start-up and shut-down, utilizing a particle swarm algorithm to identify unit combinations that comply with minimum start-up and shut-down time constraints. In contrast, the lower-layer model addresses the dual uncertainties of generation and load. It employs the Generalized Polynomial Chaos approximation to create an opportunity-constrained model aimed at minimizing unit generation and curtailment costs while maximizing flexibility supply capability. Additionally, it calculates the probability of flexibility supply-demand insufficiency due to uncertainties in demand response resource supply and system operating costs, providing feedback to the upper-layer model. Ultimately, through iterative solutions of the upper and lower models, a day-ahead scheduling plan that effectively balances flexibility and economy is derived. The proposed method is validated using a simulation of the IEEE 30-bus system case study, demonstrating its capability to balance system flexibility and economy while effectively reducing the risk of insufficient supply-demand balance.

Keywords: renewable energy system; flexibility supply-demand balance; generalized polynomial chaos; dual-layer optimization; day-ahead dispatch (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/17/21/5427/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/21/5427/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:21:p:5427-:d:1510383

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:17:y:2024:i:21:p:5427-:d:1510383