Quantitative Characterization of Surfactant Displacement Efficiency by NMR—Take the Tight Oil of Chang 8 Member of Yanchang Formation in Fuxian Area, Ordos Basin, as an Example
Hu Yin,
Gaorun Zhong (),
Jiangbin Liu and
Yanjun Wu
Additional contact information
Hu Yin: State Key Laboratory for Continental Dynamics, Department of Geology, Northwest University, Xi’an 710069, China
Gaorun Zhong: School of Petroleum Engineering and Environmental Engineering, Yan’an University, Yan’an 716000, China
Jiangbin Liu: School of Petroleum Engineering and Environmental Engineering, Yan’an University, Yan’an 716000, China
Yanjun Wu: School of Petroleum Engineering and Environmental Engineering, Yan’an University, Yan’an 716000, China
Energies, 2024, vol. 17, issue 21, 1-18
Abstract:
Surfactant flooding is a pivotal technique for enhancing oil recovery efficiency. The Chang 8 member of the Yanchang Formation in the Ordos Basin exemplifies a quintessential tight oil reservoir. Specifically, 47.9% of wells yield less than 0.1 t/d, 27.0% produce between 0.1 and 0.2 t/d, and 18.8% generate outputs ranging from 0.2 to 0.3 t/d, while only a mere 6.3% exceed production rates of over 0.3 t/d, indicating minimal efficacy of water flooding development in this context. In this study, we conducted an extensive investigation into the geological characteristics of the Yanchang 8 reservoir within the Ordos Basin, leading to the identification and evaluation of three surfactants based on their interfacial tension properties. The optimal injection concentration was determined through on-line displacement nuclear magnetic resonance imaging analysis that refined surface activity conducive to developing the Chang 8 member, ultimately resulting in increased spread volume and enhanced crude oil production from individual wells. The results indicate the following: (1) The interfacial tension of NP-10, FSD-952, and GPHQ-1 at concentrations of 0.05%, 0.1%, 0.2%, 0.3%, 0.4%, and 0.5% exhibited a pattern of initial decrease followed by an increase. The mass concentration corresponding to the minimum interfacial tension for NP-10 is identified as 0.1%, which is also the case for GPHQ-1; however, for FSD-952, this occurs at a concentration of 0.4%. Among the surface-active agents NP-10, GPHQ-1, and FSD-952, GPHQ-1 demonstrated the lowest interfacial tension value at an impressive measurement of 0.0762 mN/m. (2) When the displacement of the 0.1% GPHQ-1 surfactant reaches 10 PV, the displacement efficiency improves from 69.69% to 76.36%, representing an increase of 6.67%. The minimum pore size observed during GPHQ-1 surfactant displacement is 0.01 μm. In contrast, when the displacement of the NP-10 surfactant at a concentration of 0.1% reaches 10 PV, the efficiency rises from 68.32% to 72.02%, indicating an enhancement of 3.7%. The corresponding minimum pore size for NP-10 surfactant displacement is recorded at 0.02 μm. Furthermore, when the displacement of the FSD-952 surfactant at a concentration of 0.4% achieves 10 PV, its efficiency increases from 69.93% to 74.77%, reflecting an improvement of 4.81%. The minimum pore size associated with the activated portion of FSD-952 is noted as being approximately 0.03 μm.
Keywords: surfactant; low permeability reservoir; oil recovery efficiency; nuclear magnetic resonance; Ordos Basin (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/21/5450/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/21/5450/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:21:p:5450-:d:1511212
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().