Evolution of the Caprock Sealing Capacity Induced by CO 2 Intrusion: A Simulation of the Dezhou Dongying Formation
Shuo Yang and
Hailong Tian ()
Additional contact information
Shuo Yang: Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China
Hailong Tian: Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China
Energies, 2024, vol. 17, issue 21, 1-22
Abstract:
CO 2 –water–rock interactions have an important impact on the stability and integrity of the caprock in CO 2 geological storage projects. The injected CO 2 in the reservoir enters the caprock via different mechanisms, leading to either the dissolution or precipitation of minerals. The mineral alterations change the porosity, permeability, and mechanical properties of the caprock, affecting its sealing capability. To evaluate the sealing effectiveness of overlying caprock and identify the influencing factors, numerical simulations and experiments were carried out on the mudstone Dongying Formation in Dezhou, China. Based on high-temperature and high-pressure autoclave experiments, batch reaction simulations were performed to obtain some key kinetic parameters for mineral dissolution/precipitation. Then, they were applied to the following simulation. The simulation results indicate that gaseous CO 2 has migrated 7 m in the caprock, while dissolved CO 2 migrated to the top of the caprock. Calcite is the dominant mineral within 1 m of the bottom of the caprock. The dissolution of calcite increases the porosity from 0.0625 to 0.4, but the overall porosity of the caprock decreases, with a minimum of 0.054, mainly due to the precipitation of montmorillonite and K-feldspar. A sensitivity analysis of the factors affecting the sealing performance of the caprock considered the changes in sealing performance under different reservoir sealing conditions. Sensitivity analysis of the factors affecting the sealing performance of the caprock indicates that the difference in pressure between reservoir and caprock affects the range of CO 2 transport and the degree of mineral reaction, and the sealing of the caprock increases with the difference in pressure. Increasing the initial reservoir gas saturation can weaken the caprock’s self-sealing behavior but shorten the migration distance of CO 2 within the caprock. When the content is lower than 2%, the presence of chlorite improves the sealing performance of the caprock and does not increase with further chlorite content. This study elucidates the factors that affect the sealing ability of the caprock, providing a theoretical basis for the selection and safety evaluation of CO 2 geological storage sites.
Keywords: CO 2 geological storage; CO 2 –water–rock interaction; caprock sealing capacity; numerical simulation (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/21/5462/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/21/5462/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:21:p:5462-:d:1511740
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().