A Neuroadaptive Position-Sensorless Robust Control for Permanent Magnet Synchronous Motor Drive System with Uncertain Disturbance
Omar Aguilar-Mejia,
Antonio Valderrabano-Gonzalez (),
Norberto Hernández-Romero,
Juan Carlos Seck-Tuoh-Mora,
Julio Cesar Hernandez-Ochoa and
Hertwin Minor-Popocatl
Additional contact information
Omar Aguilar-Mejia: Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Área Académica de Ingeniería y Arquitectura, Pachuca 42184, Hidalgo, Mexico
Antonio Valderrabano-Gonzalez: Facultad de Ingeniería, Universidad Panamericana, Álvaro del Portillo 49, Zapopan 45010, Jalisco, Mexico
Norberto Hernández-Romero: Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Área Académica de Ingeniería y Arquitectura, Pachuca 42184, Hidalgo, Mexico
Juan Carlos Seck-Tuoh-Mora: Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Área Académica de Ingeniería y Arquitectura, Pachuca 42184, Hidalgo, Mexico
Julio Cesar Hernandez-Ochoa: Facultad de Ingeniería, Universidad Panamericana, Álvaro del Portillo 49, Zapopan 45010, Jalisco, Mexico
Hertwin Minor-Popocatl: School of Engineering, UPAEP University, 21 Sur 1103, Puebla 72410, Puebla, Mexico
Energies, 2024, vol. 17, issue 21, 1-17
Abstract:
The Permanent Magnet Synchronous Motor (PMSM) drive system is extensively utilized in high-precision positioning applications that demand superior dynamic performance across various operating conditions. Given the non-linear characteristics of the PMSM, a neuroadaptive sensorless controller based on B-spline neural networks is proposed to determine the control signals necessary for achieving the desired performance. The proposed control technique considers the system’s non-linearities and can be adapted to varying operating conditions, all while maintaining a low computational cost suitable for real-time operation. The introduced neuroadaptive controller is evaluated under conditions of uncertainty, and its performance is compared to that of a conventional PI controller optimized using the Whale Optimization Algorithm (WOA). The results demonstrate the viability of the proposed approach.
Keywords: adaptive B-spline controller; whale optimization; low computational cost (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/21/5477/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/21/5477/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:21:p:5477-:d:1512209
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().