EconPapers    
Economics at your fingertips  
 

A Neuroadaptive Position-Sensorless Robust Control for Permanent Magnet Synchronous Motor Drive System with Uncertain Disturbance

Omar Aguilar-Mejia, Antonio Valderrabano-Gonzalez (), Norberto Hernández-Romero, Juan Carlos Seck-Tuoh-Mora, Julio Cesar Hernandez-Ochoa and Hertwin Minor-Popocatl
Additional contact information
Omar Aguilar-Mejia: Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Área Académica de Ingeniería y Arquitectura, Pachuca 42184, Hidalgo, Mexico
Antonio Valderrabano-Gonzalez: Facultad de Ingeniería, Universidad Panamericana, Álvaro del Portillo 49, Zapopan 45010, Jalisco, Mexico
Norberto Hernández-Romero: Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Área Académica de Ingeniería y Arquitectura, Pachuca 42184, Hidalgo, Mexico
Juan Carlos Seck-Tuoh-Mora: Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Área Académica de Ingeniería y Arquitectura, Pachuca 42184, Hidalgo, Mexico
Julio Cesar Hernandez-Ochoa: Facultad de Ingeniería, Universidad Panamericana, Álvaro del Portillo 49, Zapopan 45010, Jalisco, Mexico
Hertwin Minor-Popocatl: School of Engineering, UPAEP University, 21 Sur 1103, Puebla 72410, Puebla, Mexico

Energies, 2024, vol. 17, issue 21, 1-17

Abstract: The Permanent Magnet Synchronous Motor (PMSM) drive system is extensively utilized in high-precision positioning applications that demand superior dynamic performance across various operating conditions. Given the non-linear characteristics of the PMSM, a neuroadaptive sensorless controller based on B-spline neural networks is proposed to determine the control signals necessary for achieving the desired performance. The proposed control technique considers the system’s non-linearities and can be adapted to varying operating conditions, all while maintaining a low computational cost suitable for real-time operation. The introduced neuroadaptive controller is evaluated under conditions of uncertainty, and its performance is compared to that of a conventional PI controller optimized using the Whale Optimization Algorithm (WOA). The results demonstrate the viability of the proposed approach.

Keywords: adaptive B-spline controller; whale optimization; low computational cost (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/17/21/5477/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/21/5477/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:21:p:5477-:d:1512209

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-22
Handle: RePEc:gam:jeners:v:17:y:2024:i:21:p:5477-:d:1512209