EconPapers    
Economics at your fingertips  
 

Hydropower Station Status Prediction Using RNN and LSTM Algorithms for Fault Detection

Omar Farhan Al-Hardanee () and Hüseyin Demirel
Additional contact information
Omar Farhan Al-Hardanee: Department of Electrical and Electronics Engineering, Karabük University, Karabük 78050, Türkiye
Hüseyin Demirel: Department of Electrical and Electronics Engineering, Karabük University, Karabük 78050, Türkiye

Energies, 2024, vol. 17, issue 22, 1-23

Abstract: In 2019, more than 16% of the globe’s total production of electricity was provided by hydroelectric power plants. The core of a typical hydroelectric power plant is the turbine. Turbines are subjected to high levels of pressure, vibration, high temperatures, and air gaps as water passes through them. Turbine blades weighing several tons break due to this surge, a tragic accident because of the massive damage they cause. This research aims to develop predictive models to accurately predict the status of hydroelectric power plants based on real stored data for all factors affecting the status of these plants. The importance of having a typical predictive model for the future status of these plants lies in avoiding turbine blade breakage and catastrophic accidents in power plants and the resulting damages, increasing the life of these plants, avoiding sudden shutdowns, and ensuring stability in the generation of electrical energy. In this study, artificial neural network algorithms (RNN and LSTM) are used to predict the condition of the hydropower station, identify the fault before it occurs, and avoid it. After testing, the LSTM algorithm achieved the greatest results with regard to the highest accuracy and least error. According to the findings, the LSTM model attained an accuracy of 99.55%, a mean square error (MSE) of 0.0072, and a mean absolute error (MAE) of 0.0053.

Keywords: RNN; LSTM; forecasting; vibration; temperature; pressure; turbine; dam (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/17/22/5599/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/22/5599/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:22:p:5599-:d:1517369

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:17:y:2024:i:22:p:5599-:d:1517369