EconPapers    
Economics at your fingertips  
 

Research on the Internal Flow and Cavitation Characteristics of Petal Bionic Nozzles Based on Methanol Low-Pressure Injection

Yuejian Zhu, Yanxia Wang () and Yannian Wang
Additional contact information
Yuejian Zhu: School of Traffic and Vehicle Engineering, Shandong University of Technology, Zibo 255022, China
Yanxia Wang: School of Traffic and Vehicle Engineering, Shandong University of Technology, Zibo 255022, China
Yannian Wang: School of Traffic and Vehicle Engineering, Shandong University of Technology, Zibo 255022, China

Energies, 2024, vol. 17, issue 22, 1-24

Abstract: This paper aims to discuss the internal flow and cavitation characteristics of petal bionic nozzle holes under different injection pressures to improve the atomization effect of methanol. The FLUENT (v2022 R1) software is used for simulation. The Schnerr-Sauer cavitation model in the Mixture multiphase flow model is adopted, considering the evaporation and condensation processes of methanol fuel to accurately simulate cavitation and internal flow performance. The new nozzle hole is compared with the ordinary circular nozzle hole for analysis to ensure research reliability. The results show that the cavitation of the petal bionic nozzle hole mainly occurs at the outlet, which can enhance the atomization effect. In terms of turbulent kinetic energy, the internal turbulent kinetic energy of the petal bionic nozzle hole is greater under the same pressure. At 1 MPa, its outlet turbulent kinetic energy is 38.37 m 2 /s 2 , which is about 2.3 times that of the ordinary circular nozzle hole. When the injection pressure is from 0.2 MPa to 1 MPa, the maximum temperature of the ordinary circular nozzle hole increases by about 33.4%, while that of the petal bionic nozzle hole only increases by 12.3%. The intensity of internal convection and vortex is significantly reduced. The outlet velocity and turbulent kinetic energy distribution of the petal bionic nozzle hole are more uniform. In general, the internal flow performance of the petal bionic nozzle hole is more stable, which is beneficial to the collision and fragmentation of droplets and has better uniformity of droplet distribution. It has a positive effect on improving the atomization effect of methanol injection in the intake port of methanol-diesel dual-fuel engines.

Keywords: methanol; bionic nozzles; internal flow; cavitation; atomization characteristics (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/17/22/5612/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/22/5612/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:22:p:5612-:d:1517598

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:17:y:2024:i:22:p:5612-:d:1517598