EconPapers    
Economics at your fingertips  
 

Parameter Analysis of Anion Exchange Membrane Water Electrolysis System by Numerical Simulation

Shing-Cheng Chang, Ru-En Gu and Yen-Hsin Chan ()
Additional contact information
Shing-Cheng Chang: Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Tainan 711, Taiwan
Ru-En Gu: Department of Mechanical and Computer-Aided Engineering, Feng Chia University, Taichung 407, Taiwan
Yen-Hsin Chan: Department of Mechanical and Computer-Aided Engineering, Feng Chia University, Taichung 407, Taiwan

Energies, 2024, vol. 17, issue 22, 1-20

Abstract: Anion exchange membrane electrolysis, which combines the advantages of both alkaline electrolysis and proton-exchange membrane electrolysis, is a promising technology to reduce the cost of hydrogen production. The present work focused on the study of the electrochemical phenomena of AEM electrolysis and the investigation of the key factors of the AEM hydrogen production system. The numerical model is established according to electrochemical reactions, polarization phenomena, and the power consumption of the balance of plant components of the system. The effects of operation parameters, including the temperature and hydrogen pressure of the electrolyzer, electrolyte concentration, and hydrogen supply pressure on the energy efficiency are studied. The basic electrochemical phenomena of AEM water electrolysis cells are analyzed by simulations of reversible potential and activation, and ohmic and concentration polarizations. The results reveal that increasing the operating temperature and hydrogen production pressure of the AEM electrolyzer has positive effects on the system’s efficiency. By conducting an optimization analysis of the electrolyzer temperature—which uses the heat energy generated by the electrochemical reaction of the electrolyzer to minimize the power consumption of the electrolyte pump and heater—the AEM system with an electrolyzer operating at 328 K and 30 bar can deliver hydrogen of pressure up to 200 bar under an energy efficiency of 56.4%.

Keywords: water electrolysis; hydrogen production; thermodynamic analysis (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/17/22/5682/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/22/5682/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:22:p:5682-:d:1520312

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:17:y:2024:i:22:p:5682-:d:1520312