EconPapers    
Economics at your fingertips  
 

Refinement of Recloser Operation and Safety Enhancement in Distribution Systems: A Study Based on Real Data

Geonho Kim, Tae-Hwan Kim and Jun-Hyeok Kim ()
Additional contact information
Geonho Kim: Smart Power Distribution Laboratory, Korea Electric Power Corporation Research Institute, Daejeon 34056, Republic of Korea
Tae-Hwan Kim: Smart Power Distribution Laboratory, Korea Electric Power Corporation Research Institute, Daejeon 34056, Republic of Korea
Jun-Hyeok Kim: School of Electronic and Electrical Engineering, Hankyong National University, Anseong 17579, Republic of Korea

Energies, 2024, vol. 17, issue 22, 1-13

Abstract: This study analyzes recloser operation in the South Korean distribution system to propose effective operational strategies for improving safety and efficiency. This research is based on actual data, such as recloser operation data and fault statistics provided by the Ministry of the Interior and Safety and the Korea Electric Power Corporation, without the use of simulation tools or experiments. Key operational elements, such as reclosure counts, sequence settings, and high-current interruption features, were analyzed. First, an analysis of reclosure counts revealed that over 73% of faults were cleared after the first reclosure, and when the second reclosure was included, more than 90% were successfully restored. This finding suggests that reducing the number of reclosures from the standard three to one or two would not significantly impact fault restoration performance while simultaneously reducing arc generation, thereby improving safety. Additionally, a review of recloser sequence settings highlighted the fact that the traditional 2F2D (two fast, two delayed) sequence often led to frequent instantaneous tripping, increasing the risk of arc generation. The 1F1D (one fast, one delayed) sequence, which applies a delayed trip after an initial fast trip, offers a better fault-clearing performance and reduces the risk of arc generation. Lastly, an analysis of the high-current interruption feature suggested that enabling this function for faults with low reclosing success rates, particularly in cases of short-circuit faults, and setting an immediate trip threshold for fault currents exceeding 3 kA would enhance both safety and efficiency. This operational strategy was implemented in the South Korean distribution system over a three-year period, starting in 2021. While there was a 2.1% decrease in reclosure success rates, this strategy demonstrated that similar success levels could be maintained while reducing the number of reclosures, thus mitigating equipment damage risks and improving safety measures. The refined recloser operation plan derived from this study is expected to enhance the overall stability and reliability of distribution systems.

Keywords: recloser; reclosing count; recloser sequence; high-current interruption; safety (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/17/22/5700/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/22/5700/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:22:p:5700-:d:1520985

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:17:y:2024:i:22:p:5700-:d:1520985