Investigation on Hydrodynamic Performance and Wall Temperature of Water-Cooled Wall in 1000 MW Boiler Under Low-Load Conditions
Peian Chong,
Xiaolei Zhu,
Jianning Li,
Xiao Li and
Lei Deng ()
Additional contact information
Peian Chong: Shanghai Power Equipment Research Institute Co., Ltd., Shanghai 200240, China
Xiaolei Zhu: Shanghai Power Equipment Research Institute Co., Ltd., Shanghai 200240, China
Jianning Li: Shanghai Power Equipment Research Institute Co., Ltd., Shanghai 200240, China
Xiao Li: State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Lei Deng: State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Energies, 2024, vol. 17, issue 22, 1-17
Abstract:
To enhance the peak-shaving capability of a boiler, a mathematical model of hydrodynamic and wall temperature characteristics for the water-cooled wall of a 1000 MW boiler was established. Utilizing the component pressure method, the mass flow distribution, outlet working fluid temperature, pressure loss, and wall temperature distribution characteristics of the water-cooled walls at 30% of the boiler’s maximum continuous rating (BMCR) were calculated and analyzed. The findings suggest that, under the operation at 30% BMCR load, there is a substantial equilibrium in the flow distribution across the quartet of walls that constitute the water-cooled wall assembly. The maximum mass flow rate deviations in the helical and vertical sections are 1.95% and 3.47%, respectively, showing small flow deviations and reasonable distribution. The temperature deviation in the helical section is 0.3 °C, reflecting the characteristic low thermal deviation in helical tubes. While the temperature deviation at the outlet of the vertical section is higher, it remains within safe limits. The pressure loss across the water-cooled wall system amounts to 0.4 MPa. The peak wall temperature reaches 337.5 °C, remaining within the material’s permissible safety limits. Through an in-depth performance analysis, the hydrodynamic operational safety under 30% BMCR deep peak-shaving load is ensured.
Keywords: supercritical boiler; water-cooled wall; hydrodynamic performance; wall temperature characteristics; deep peak shaving (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/22/5751/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/22/5751/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:22:p:5751-:d:1523178
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().