EconPapers    
Economics at your fingertips  
 

State-of-Health Estimation for Lithium-Ion Batteries in Hybrid Electric Vehicles—A Review

Jianyu Zhang and Kang Li ()
Additional contact information
Jianyu Zhang: School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, UK
Kang Li: School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, UK

Energies, 2024, vol. 17, issue 22, 1-16

Abstract: This paper presents a comprehensive review of state-of-health (SoH) estimation methods for lithium-ion batteries, with a particular focus on the specific challenges encountered in hybrid electric vehicle (HEV) applications. As the demand for electric transportation grows, accurately assessing battery health has become crucial to ensuring vehicle range, safety, and battery lifespan, underscoring the relevance of high-precision SoH estimation methods in HEV applications. The paper begins with outlining current SoH estimation methods, including capacity-based, impedance-based, voltage and temperature-based, and model-based approaches, analyzing their advantages, limitations, and applicability. The paper then examines the impact of unique operating conditions in HEVs, such as frequent charge–discharge cycles and fluctuating power demands, which necessitate tailored SoH estimation techniques. Moreover, this review summarizes the latest research advances, identifies gaps in existing methods, and proposes scientifically innovative improvements, such as refining estimation models, developing techniques specific to HEV operational profiles, and integrating multiple parameters (e.g., voltage, temperature, and impedance) to enhance estimation accuracy. These approaches offer new pathways to achieve higher predictive accuracy, better meeting practical application needs. The paper also underscores the importance of validating these estimation methods in real-world scenarios to ensure their practical feasibility. Through systematic evaluation and innovative recommendations, this review contributes to a deeper understanding of SoH estimation for lithium-ion batteries, especially in HEV contexts, and provides a theoretical basis to advance battery management system optimization technologies.

Keywords: state-of-health estimation; lithium-ion batteries; hybrid electric vehicles (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/17/22/5753/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/22/5753/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:22:p:5753-:d:1523226

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:17:y:2024:i:22:p:5753-:d:1523226