Transient and Steady-State Evaluation of Distributed Generation in Medium-Voltage Distribution Networks
Daniel Guillén-López,
Xavier Serrano-Guerrero (),
Antonio Barragán-Escandón and
Jean-Michel Clairand
Additional contact information
Daniel Guillén-López: Energy Transition Research Group, Universidad Politécnica Salesiana, Cuenca 010103, Ecuador
Xavier Serrano-Guerrero: Energy Transition Research Group, Universidad Politécnica Salesiana, Cuenca 010103, Ecuador
Antonio Barragán-Escandón: Energy Transition Research Group, Universidad Politécnica Salesiana, Cuenca 010103, Ecuador
Jean-Michel Clairand: Facultad de Ingenería y Ciencias Aplicadas, Universidad de las Américas, Quito 170122, Ecuador
Energies, 2024, vol. 17, issue 22, 1-24
Abstract:
As power generation systems with increasingly higher capacities are interconnected with distribution networks, a pressing need arises for a thorough analysis of their integration and the subsequent impacts on medium-voltage lines. This study conducts a comprehensive evaluation, encompassing both steady-state and transient behaviours, leading to a holistic assessment of a real-world biogas generation system integrated into a medium-voltage network. Although the methodology does not introduce revolutionary concepts, its detailed application on a real feeder under various operating conditions adds practical value to the existing body of knowledge. The methodology explores various aspects, including voltage profiles, load capacity, power losses, short-circuit currents, and protection coordination in steady-state conditions. Additionally, a transient analysis is performed to examine the system’s response under fault conditions. This systematic approach provides a deep understanding of the system’s behaviour across diverse operational scenarios, enriching the field with practical insights. The key contributions of this study include identifying the effects of distributed generation systems (DGSs) on short-circuit currents, protection coordination, and defining voltage levels that briefly exceed the CBEMA quality curve. The benefits of incorporating a generation system into a distribution network are discussed from various technical perspectives. In a peak demand scenario, with a 1.72 MW generation capacity, the phase current experiences a notable reduction of 35.78%. Concurrently, the minimum peak demand voltage increases from 12.62 to 12.83 kV compared to a nominal voltage of 12.7 kV. Furthermore, the contribution of the generation system to the short-circuit current remains minimal, staying below 4% even under the most adverse conditions. However, our findings reveal that voltage levels exceed the upper limit of the CBEMA quality curve briefly during a single-phase fault with generation, which could potentially damage electronic equipment connected to the grid. Nonetheless, the likelihood of encountering a single-phase grounding fault with zero resistance remains low.
Keywords: distributed generation; short-circuit currents; protection coordination; voltage profiles; transient and steady-state analysis; medium-voltage distribution networks (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/22/5783/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/22/5783/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:22:p:5783-:d:1524746
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().