Electrical Model Analysis for Bifacial PV Modules Using Real Performance Data in Laboratory
Valentina González Becerra,
Patricio Valdivia-Lefort (),
Rodrigo Barraza and
Jesús García García
Additional contact information
Valentina González Becerra: Department of Electrical Engineering, Universidad Técnica Federico Santa Maria, Santiago 8940000, Chile
Patricio Valdivia-Lefort: Department of Electrical Engineering, Universidad de Santiago de Chile, Santiago 8370003, Chile
Rodrigo Barraza: Faculty of Engineering and Sciences, Universidad Adolfo Ibáñez, Santiago 7941169, Chile
Jesús García García: Institute of Mechanical Engineering, Faculty of Engineering Sciences, Universidad Austral de Chile, Valdivia 5110566, Chile
Energies, 2024, vol. 17, issue 23, 1-21
Abstract:
The new PV technologies, such as bifacial modules, bring the challenge of analyzing the response of numerical models and their fit to actual measurements. Thus, this study explores various models available in the literature for simulating the IV curve behavior of bifacial photovoltaic modules. The analysis contains traditional models, such as single and double-diode models, and empirical or analytical methodologies. Therefore, this paper proposes and implements a model performance assessment framework. This framework aims to establish a common basis for comparison and verify the applicability of each model by contrasting it with experimental data under controlled conditions of irradiance and temperature. The study utilizes bifacial modules of PERC+, HJT, and n-PERT technologies, tracing IV curves using a high-precision A+A+A+ solar simulator and conducting two sets of laboratory illumination measurements: single-sided and double-sided. In the first case, each face of the module is illuminated separately, while in the latter, the incident frontal illuminating light is reflected on a reflective surface. Experimental data obtained from these measurements are used to evaluate three different approximations for bifacial IV curve models in the case of double-sided illumination. The employed model for single-sided illumination is a single-diode model. The evaluation of various models revealed that shadowing from frames and junction boxes contributes to an increase in the error of modeled IV curves. However, among the three evaluated bifacial electrical models, one exhibited superior performance, with current errors approaching approximately 20 % . To mitigate this discrepancy, a proposed methodology highlighted the significance of accurately estimating I o , suggesting its potential to reduce errors. This research provides a foundation for comparing electrical models to identify their strengths and limitations, paving the way for the development of more accurate modeling approaches tailored to bifacial modules. The insights gained from this study are crucial for enhancing the precision of IV curve predictions under various illumination conditions, which is essential for optimizing bifacial module performance in real-world applications.
Keywords: PV models; bifacial module; experimental data (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/23/5868/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/23/5868/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:23:p:5868-:d:1527323
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().