Recovery of Biogas and Other Valuable Bioproducts from Livestock Blood Waste: A Review
Katarzyna Bułkowska and
Magdalena Zielińska ()
Additional contact information
Katarzyna Bułkowska: Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn, Słoneczna St. 45G, 10-709 Olsztyn, Poland
Magdalena Zielińska: Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn, Słoneczna St. 45G, 10-709 Olsztyn, Poland
Energies, 2024, vol. 17, issue 23, 1-25
Abstract:
The anaerobic digestion (AD) of livestock blood represents a sustainable solution for the management of waste generated by the meat processing industry while simultaneously generating renewable energy. The improper treatment of livestock blood, which is rich in organic matter and nutrients, can result in environmental risks such as water pollution, soil degradation, and greenhouse gas emissions. This review examines a range of AD strategies, with a particular focus on technological advances in reactor design, pretreatment, and co-digestion, with the aim of optimizing process efficiency. While the high protein content of blood has the potential to enhance biogas production, challenges such as ammonia inhibition and process instability must be addressed. Innovations such as bio-carriers, thermal pretreatment, and co-digestion with carbon-rich substrates have demonstrated efficacy in addressing these challenges, resulting in stable operation and enhanced methane yields. The advancement of AD technologies is intended to mitigate the environmental impact of livestock blood waste and facilitate the development of a circular bioeconomy. Furthermore, the possibility of utilizing slaughterhouse blood for the recovery of valuable products, including proteins, heme iron, and bioactive peptides, was evaluated with a view to their potential applications in the pharmaceutical and food industries. Furthermore, the potential of utilizing protein-rich blood as a substrate for mixed culture fermentation in volatile fatty acid (VFA) biorefineries was explored, illustrating its viability in biotechnological applications.
Keywords: livestock blood waste; waste management; protein-rich substrate; ammonia inhibition (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/23/5873/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/23/5873/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:23:p:5873-:d:1527406
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().