A Novel LCLC Parallel Resonant Circuit for High-Frequency Induction Heating Application
Sheng Xu,
Zuping Xu () and
Huafeng Xia
Additional contact information
Sheng Xu: Department of Electrical Engineering, Taizhou University, Taizhou 225300, China
Zuping Xu: College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225009, China
Huafeng Xia: Department of Electrical Engineering, Taizhou University, Taizhou 225300, China
Energies, 2024, vol. 17, issue 23, 1-14
Abstract:
The application of induction heating power supply in the continuous production line of tinplate has garnered significant research and scholarly attention. However, the impedance matching of LC or CLC resonant circuits in the system lacks flexibility and is susceptible to overvoltage during startup. As a solution to the problem, a novel four-order LCLC parallel resonant circuit was proposed in this study for high-frequency induction heating power supply. By incorporating auxiliary inductors in parallel with CLC compensating capacitor branches, the induction heating system can operate reliably and achieve optimal load impedance matching. The equivalent circuit and mathematical model of the new resonant load were established, and the frequency characteristics of the circuit system were analyzed. Then, the parallel resonance characteristics of the new resonant circuit were comprehensively elucidated, including the quality factor, impedance characteristics, behavior of resonant current, and properties of voltage regulation. Finally, a simulation model of a high-frequency induction heating power supply was developed based on the proposed LCLC resonant circuit and compared with LC and CLC resonant circuits. The results demonstrated that the induction heating power supply system utilizing the proposed LCLC parallel resonant load exhibits superior parallel resonant characteristics, enhanced load impedance-matching flexibility, and improved output voltage stability when compared to traditional LC or CLC parallel resonant loads.
Keywords: high-frequency induction heating power supply; current source inverter; LCLC resonant circuit; parallel resonance; impedance matching (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/23/5892/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/23/5892/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:23:p:5892-:d:1528090
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().