EconPapers    
Economics at your fingertips  
 

Optimized Operation of Integrated Cooling-Electricity-Heat Energy Systems with AA-CAES and Integrated Demand Response

Tiannan Ma, Lilin Peng, Gang Wu, Danhao Chen and Xin Zou ()
Additional contact information
Tiannan Ma: State Grid Sichuan Economic Research Institute, Chengdu 610041, China
Lilin Peng: Sichuan Power Exchange Center Co., Ltd., Chengdu 610041, China
Gang Wu: State Grid Sichuan Economic Research Institute, Chengdu 610041, China
Danhao Chen: State Grid Hubei Electric Power Co., Ltd., Yichang Power Supply Company, Yichang 443000, China
Xin Zou: Department of Economic Management, North China Electric Power University, Baoding 071003, China

Energies, 2024, vol. 17, issue 23, 1-21

Abstract: Integrated energy systems (IESs) have been implemented with the objective of enhancing the efficiency of energy utilization and facilitating the sustainable transition of society and energy systems. To further explore the multi-energy coupling capacity and carbon reduction potential of the IESs, this study presents the design of an integrated cold-electricity-heat energy system (ICEHS) with advanced adiabatic compressed air energy storage (AA-CAES). AA-CAES has the capacity to not only store and release electric energy, but also to provide cold and heat energy, which makes it an ideal choice for this application. The main work of this study is fourfold: (1) the energy hub concept is employed to describe the energy transformations within AA-CAES, thereby reducing the modeling complexity; (2) integrated demand response (IDR) for cooling, heating, and electric loads, including shiftable loads, adjustable loads, interruptible loads, and replaceable loads, is considered; (3) Latin hypercubic sampling in conjunction with K-means clustering is employed to address the issue of source-load uncertainty; and (4) an ICEHS operation optimization model is developed with the objective of minimizing the daily operating cost, where the possible cost terms include energy purchase cost, operation and maintenance cost, demand response cost, and carbon emission cost. A typical community integrated energy system is employed as an illustrative example, and four different scenarios are established to validate the effectiveness of the proposed model. The results indicate that AA-CAES and IDR can effectively reduce the daily operating cost and carbon emissions of an ICEHS. In comparison to the scenario that did not incorporate AA-CAES and IDR, the daily operating cost and carbon emissions are reduced by 4.8% and 10.3%, respectively.

Keywords: integrated energy system; AA-CAES; optimal operation; integrated demand response; source-load uncertainty (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/17/23/6000/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/23/6000/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:23:p:6000-:d:1532100

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:6000-:d:1532100