EconPapers    
Economics at your fingertips  
 

A Study on Electric Vehicle Footprint in South Africa

Oluwafemi Emmanuel Oni and Omowunmi Mary Longe ()
Additional contact information
Oluwafemi Emmanuel Oni: Department of Electrical and Electronic Engineering Science, University of Johannesburg, Johannesburg 2006, South Africa
Omowunmi Mary Longe: Department of Electrical and Electronic Engineering Science, University of Johannesburg, Johannesburg 2006, South Africa

Energies, 2024, vol. 17, issue 23, 1-37

Abstract: There has been a progressive global increase in the usage of electric vehicles in this dispensation. This is mostly due to the need to decarbonise the transport sector and mitigate the concerns of climate change and depleting oil reserves of which South Africa is not an exception. In fact, South Africa is the country with the highest CO 2 emissions in Africa and can reduce its carbon footprint by embracing green mobility. Compared to the internal combustion engine (ICE) market, the electric vehicle (EV) market in South Africa is still in its early stages, with limited local production and usage since its introduction to the country’s automotive sector in 2013. Therefore, in this study, the usage of EVs in South Africa, along with adoption rates and challenges were carried out to make a stronger case that would offer a better pathway for increased EV adoption in the country. It has been discovered that the slow adoption rate of EVs is due to factors such as EV procurement, ownership costs, vehicle parts, safety issues, battery technology, tax and import duties, load shedding, and availability of charging stations. This paper also provides insights into government policies, funding, and other efforts that can support EV adoption in the country through the analyses of primary and secondary data. The proposed strategies include the introduction of tax rebates on imported EVs, local production of EVs and their vehicle parts, retrofitting ICE vehicles to EVs, and science-informed strategies to transition from ICE to electric vehicles. Furthermore, more renewable energy grid integration and renewable energy-powered EV charging stations would also provide support for the energy required to power EVs even during load shedding. Preliminary findings from the survey also suggest that the local production of EV components and government-sponsored training programmes on various EV skills are crucial for increasing the adoption rate of EVs in the country.

Keywords: electric vehicles (EVs); battery electric vehicle; greenhouse gas emissions; vehicle to grid; internal combustion engine (ICE) vehicles (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/17/23/6086/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/23/6086/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:23:p:6086-:d:1535794

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:6086-:d:1535794