EconPapers    
Economics at your fingertips  
 

Developing an Optimized Energy-Efficient Sustainable Building Design Model in an Arid and Semi-Arid Region: A Genetic Algorithm Approach

Ahmad Walid Ayoobi () and Mehmet Inceoğlu ()
Additional contact information
Ahmad Walid Ayoobi: Department of Architecture, Faculty of Construction, Kabul Polytechnic University, Kabul 1001, Afghanistan
Mehmet Inceoğlu: Department of Architecture, Faculty of Architecture & Design, Eskisehir Technical University, Eskisehir 26555, Turkey

Energies, 2024, vol. 17, issue 23, 1-31

Abstract: The building sector is a major contributor to resource consumption, energy use, and greenhouse gas emissions. Sustainable architecture offers a solution, leveraging Building Energy Modeling (BEM) for early-stage design optimization. This study explores the use of genetic algorithms for optimizing sustainable design strategies holistically. A comprehensive analysis and optimization model was developed using genetic algorithms to individually optimize various sustainable strategies. The optimized strategies were then applied to a pre-existing building in Kabul City, a region facing significant environmental challenges. To enhance accuracy, this study integrated energy simulations with Computational Fluid Dynamics (CFD). This research combines genetic algorithms with energy simulation and CFD analysis to optimize building design for a specific climate. Furthermore, it validates the optimized strategies through a real-world case study building. Optimizing the Window-to-Wall Ratio (WWR) and shading devices based on solar exposure significantly improved the building’s energy performance. South (S)-facing single windows and specific combinations of opposing and adjacent windows emerged as optimal configurations. The strategic optimization of building component materials led to substantial energy savings: a 58.6% reduction in window energy loss, 78.3% in wall loss, and 69.5% in roof loss. Additionally, the optimized pre-existing building achieved a 48.1% reduction in cooling demand, a 97.5% reduction in heating demand, and an overall energy reduction of 84.4%. Improved natural ventilation and controlled solar gain led to a 72.2% reduction in peak-month CO 2 emissions. While this study focused on applicable passive design strategies, the integration of advanced technologies like Phase Change Materials (PCMs), kinetic shading devices, and renewable energy systems can further improve building performance and contribute to achieving net-zero buildings.

Keywords: sustainable design; energy efficiency; genetic algorithm; Building Energy Modeling; optimization (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/17/23/6095/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/23/6095/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:23:p:6095-:d:1536096

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:6095-:d:1536096