EconPapers    
Economics at your fingertips  
 

Seawater Treatment Technologies for Hydrogen Production by Electrolysis—A Review

Łukasz Mika, Karol Sztekler, Tomasz Bujok, Piotr Boruta and Ewelina Radomska ()
Additional contact information
Łukasz Mika: Department of Thermal and Fluid Flow Machines, Faculty of Energy and Fuels, AGH University of Krakow, al. A. Mickiewicza 30, 30-059 Krakow, Poland
Karol Sztekler: Department of Thermal and Fluid Flow Machines, Faculty of Energy and Fuels, AGH University of Krakow, al. A. Mickiewicza 30, 30-059 Krakow, Poland
Tomasz Bujok: Department of Thermal and Fluid Flow Machines, Faculty of Energy and Fuels, AGH University of Krakow, al. A. Mickiewicza 30, 30-059 Krakow, Poland
Piotr Boruta: Department of Thermal and Fluid Flow Machines, Faculty of Energy and Fuels, AGH University of Krakow, al. A. Mickiewicza 30, 30-059 Krakow, Poland
Ewelina Radomska: Department of Thermal and Fluid Flow Machines, Faculty of Energy and Fuels, AGH University of Krakow, al. A. Mickiewicza 30, 30-059 Krakow, Poland

Energies, 2024, vol. 17, issue 24, 1-33

Abstract: Green hydrogen, produced by water electrolysis using renewable energy sources (RES), is an emerging technology that aligns with sustainable development goals and efforts to address climate change. In addition to energy, electrolyzers require ultrapure water to operate. Although seawater is abundant on the Earth, it must be desalinated and further purified to meet the electrolyzer’s feeding water quality requirements. This paper reviews seawater purification processes for electrolysis. Three mature and commercially available desalination technologies (reverse osmosis, multiple-effect distillation, and multi-stage flash) were examined in terms of working principles, performance parameters, produced water quality, footprint, and capital and operating expenditures. Additionally, pretreatment and post-treatment techniques were explored, and the brine management methods were investigated. The findings of this study can help guide the selection and design of water treatment systems for electrolysis.

Keywords: electrolysis; hydrogen; desalination; water treatment; reverse osmosis; multiple-effect distillation; multi-stage flash; ion exchange; electrodeionization (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/17/24/6255/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/24/6255/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:24:p:6255-:d:1541713

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:17:y:2024:i:24:p:6255-:d:1541713