EconPapers    
Economics at your fingertips  
 

A Novel Graph Reinforcement Learning-Based Approach for Dynamic Reconfiguration of Active Distribution Networks with Integrated Renewable Energy

Hua Zhan, Changxu Jiang () and Zhen Lin
Additional contact information
Hua Zhan: Automotive School, Fujian Chuanzheng Communications College, Fuzhou 350007, China
Changxu Jiang: College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350108, China
Zhen Lin: College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350108, China

Energies, 2024, vol. 17, issue 24, 1-19

Abstract: The dynamic reconfiguration of active distribution networks (ADNDR) essentially belongs to a complex high-dimensional mixed-integer nonlinear stochastic optimization problem. Traditional mathematical optimization algorithms tend to encounter issues like slow computational speed and difficulties in solving large-scale models, while heuristic algorithms are prone to fall into local optima. Furthermore, few scholars in the existing research on distribution network (DN) reconfiguration have considered the graph structure information, resulting in the loss of critical topological information and limiting the effect of optimization. Therefore, this paper proposes an ADNDR approach based on the graph convolutional network deep deterministic policy gradient (GCNDDPG). Firstly, a nonlinear stochastic optimization mathematical model for the ADNDR is constructed, taking into account the uncertainty of sources and loads. Secondly, a loop-based encoding method is employed to reduce the action space and complexity of the ADNDR. Then, based on graph theory, the DN structure is transformed into a dynamic network graph model, and a GCNDDPG-based ADNDR approach is proposed for the solution. In this method, graph convolutional networks are used to extract features from the graph structure information, and the state of the DN, and the deep deterministic policy gradient is utilized to optimize the ADNDR decision-making process to achieve the safe, stable, and economic operation of the DN. Finally, the effectiveness of the proposed approach is verified on an improved IEEE 33-bus power system. The simulation results demonstrate that the method can effectively enhance the economy and stability of the DN, thus validating the effectiveness of the proposed approach.

Keywords: active distribution network; distribution network dynamic reconfiguration; graph convolutional network; deep deterministic policy gradient; deep reinforcement learning (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/17/24/6311/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/24/6311/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:24:p:6311-:d:1543859

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:17:y:2024:i:24:p:6311-:d:1543859