Advancements in Manufacturing of High-Performance Perovskite Solar Cells and Modules Using Printing Technologies
Shohreh Soltani and
Dawen Li ()
Additional contact information
Shohreh Soltani: Department of Electrical and Computer Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
Dawen Li: Department of Electrical and Computer Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
Energies, 2024, vol. 17, issue 24, 1-29
Abstract:
Perovskite photovoltaic technology carries immense opportunity for the solar industries because of its remarkable efficiency and prospect for cost-effective production. However, the successful deployment of perovskite solar modules (PSMs) in the solar market necessitates tackling stability-based obstacles, scalability, and environmental considerations. This paper unveils a comprehensive examination of the cutting-edge advancements in the manufacturing of perovskite solar cells (PSCs) and modules, with an emphasis on high-speed, large-area printing. The paper underscores the substantial progress achieved in printed PSCs and PSMs, demonstrating promising electrical performance and long-term device durability. This review paper categorizes printing techniques compatible with large-area high-speed manufacturing into three distinct families: blade coating, slot die coating, and screen printing, as these common printing practices offer precise control, scalability, cost-effectiveness, high resolution, and efficient material usage. Additionally, this paper presents an in-depth investigation and comparison of superior PSCs and PSMs fabricated by printing on power conversion efficiency (PCE), stability, and scalability.
Keywords: perovskite-based solar cells and modules; industry-compatible printing processes; screen printing; slot die coating; blade coating (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/24/6344/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/24/6344/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:24:p:6344-:d:1545429
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().