Energy-Saving Geospatial Data Storage—LiDAR Point Cloud Compression
Artur Warchoł (),
Karolina Pęzioł and
Marek Baścik
Additional contact information
Artur Warchoł: Department of Geodesy and Geomatics, Faculty of Environmental Engineering, Geomatics and Renewable Energy, Kielce University of Technology, 25-314 Kielce, Poland
Karolina Pęzioł: Department of Geodesy and Geomatics, Faculty of Environmental Engineering, Geomatics and Renewable Energy, Kielce University of Technology, 25-314 Kielce, Poland
Marek Baścik: 3Deling Sp z o.o., 31-532 Krakow, Poland
Energies, 2024, vol. 17, issue 24, 1-28
Abstract:
In recent years, the growth of digital data has been unimaginable. This also applies to geospatial data. One of the largest data types is LiDAR point clouds. Their large volumes on disk, both at the acquisition and processing stages, and in the final versions translate into a high demand for disk space and therefore electricity. It is therefore obvious that in order to reduce energy consumption, lower the carbon footprint of the activity and sensitize sustainability in the digitization of the industry, lossless compression of the aforementioned datasets is a good solution. In this article, a new format for point clouds—3DL—is presented, the effectiveness of which is compared with 21 available formats that can contain LiDAR data. A total of 404 processes were carried out to validate the 3DL file format. The validation was based on four LiDAR point clouds stored in LAS files: two files derived from ALS (airborne laser scanning), one in the local coordinate system and the other in PL-2000; and two obtained by TLS (terrestrial laser scanning), also with the same georeferencing (local and national PL-2000). During research, each LAS file was saved 101 different ways in 22 different formats, and the results were then compared in several ways (according to the coordinate system, ALS and TLS data, both types of data within a single coordinate system and the time of processing). The validated solution (3DL) achieved CR (compression rate) results of around 32% for ALS data and around 42% for TLS data, while the best solutions reached 15% for ALS and 34% for TLS. On the other hand, the worst method compressed the file up to 424.92% (ALS_PL2000). This significant reduction in file size contributes to a significant reduction in energy consumption during the storage of LiDAR point clouds, their transmission over the internet and/or during copy/transfer. For all solutions, rankings were developed according to CR and CT (compression time) parameters.
Keywords: energy saving; data storage; point clouds; LiDAR; compression; compression rate; industry (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/24/6413/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/24/6413/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:24:p:6413-:d:1548072
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().