Study on the Influence of an Internal Stiffening System on the Structural Strength of the Semi-Submersible Structures for a Floating Offshore Wind Turbine
Hao Yu Dou,
Han Koo Jeong () and
Jian Lun Jiang
Additional contact information
Hao Yu Dou: Department of Naval Architecture and Ocean Engineering, Kunsan National University, Gunsan 54150, Republic of Korea
Han Koo Jeong: Department of Naval Architecture and Ocean Engineering, Kunsan National University, Gunsan 54150, Republic of Korea
Jian Lun Jiang: Department of Naval Architecture and Ocean Engineering, Kunsan National University, Gunsan 54150, Republic of Korea
Energies, 2024, vol. 17, issue 24, 1-19
Abstract:
This study presents the development and comparative analysis of a new Y-type floating offshore wind turbine platform based on the existing T-type model. Utilizing advanced simulation tools, such as MSC, Patran and Nastran 2022.3, FEGate For Ship 5.0, and Ansys AQWA 2021 R2, extensive evaluations are conducted on the structural strength, stability, and dynamic response of both the T-type and the newly proposed Y-type platforms. In this research, the structural optimization algorithm based on the above simulation tools is adopted, and its results are compared with preoptimization results to demonstrate the improvements made in design precision and reliability. Results indicate that the Y-type model achieves a maximum reduction in von Mises stress by 30.21 MPa compared to the T-type model, and its heave and pitch motion amplitudes are reduced by 4.3412 m and 4.9362°, respectively, under extreme sea state conditions. Through structural optimization using the Nastran SOL200 module, the column structure weight is reduced by 11.31%, meeting the strength requirements while enhancing efficiency. These findings highlight the Y-type platform’s improved performance and provide robust design strategies for floating offshore wind turbines in deep-water regions, crucial for advancing global renewable energy solutions. Future research should focus on the impacts of different marine conditions on platform performance and consider integrating new materials or innovative design enhancements to further optimize platform functionality. Additionally, due to potential limitations from model simplification, emphasis on real-world testing and validation under operational conditions is recommended. Overall, this research clarifies the differences in structural performance between the T-type and Y-type floating platforms and introduces an improved platform design approach, offering valuable insights and guidance for the future development of floating offshore wind turbine technology.
Keywords: floating offshore wind turbines; floating platforms; structural optimization; structural strength analysis; stability analysis (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/24/6471/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/24/6471/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:24:p:6471-:d:1550245
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().