Impact of Multi-Valve Exhaust Gas Recirculation (EGR) System on Nitrogen Oxides Emissions in a Multi-Cylinder Engine
Konrad Krakowian ()
Additional contact information
Konrad Krakowian: Department of Automotive Engineering, Mechanical Faculty, Wrocław University of Science and Technology, Braci Gierymskich 164, 51-640 Wrocław, Poland
Energies, 2024, vol. 17, issue 24, 1-11
Abstract:
Exhaust gas recirculation (EGR) systems, in addition to catalytic reactors, are now widely used in reciprocating internal combustion engines to reduce oxides of nitrogen (NOx) in the exhaust gases. They are characterized by the fact that part of the exhaust gas from the exhaust manifold is recycled and directed to the intake manifold through a special valve. This valve, depending on the current engine load and velocity, doses an appropriate amount of exhaust gas which, with each new charge, is fed to the individual engine cylinders. In addition, the positioning of the valve has a significant effect on the formation of nitrogen oxides in the exhaust gas from individual engine cylinders, which is due to the uneven distribution of exhaust gas into the intake manifold channels. Tests were carried out on a power unit equipped with a symmetrical intake manifold with a centrally located EGR valve. The article presents the results of tests on a system in which each cylinder was supplied with a separate EGR valve. This solution made it possible to charge each cylinder with the same mass of recirculated exhaust gas, which was dependent on engine velocity and load. The exhaust nitrogen oxides emissions were measured for the originally manufactured system and compared with the multi-valve system. The results confirmed the need for individual selection of the dose of recirculated exhaust gas for particular cylinders, as the multi-valve system equalized the levels of nitrogen oxides emissions in the exhaust gases coming from individual cylinders of the internal combustion engine.
Keywords: exhaust gas recirculation; emission of nitrogen oxides; compression-ignition engine (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/24/6473/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/24/6473/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:24:p:6473-:d:1550282
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().