CFD-Based Investigation of the Operation Process of Radial Labyrinth Machinery Under Different Geometrical Configurations
Przemyslaw Szulc () and
Janusz Skrzypacz
Additional contact information
Przemyslaw Szulc: Faculty of Mechanical and Power Engineering, Department of Energy Conversion Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
Janusz Skrzypacz: Faculty of Mechanical and Power Engineering, Department of Energy Conversion Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
Energies, 2024, vol. 17, issue 24, 1-21
Abstract:
This study explores the performance and flow characteristics of radial labyrinth pumps (RLPs) under various geometrical configurations and operating conditions. Experimental investigations and numerical simulations were conducted to evaluate the impact of design parameters such as blade geometry, channel width and blade angle on pump hydraulic performance. The numerical model, developed using the realizable k-ε turbulence model, was validated with experimental data, achieving satisfactory convergence (4.8%—bladed active disc operating with a smooth passive disc and 3.0%—bladed active disc operating with a bladed passive disc). Analysis of the velocity profiles and vortex structures formed between the active and passive discs was performed. These findings underscore the importance of optimizing disc geometry to balance centrifugal effects and momentum exchange. The obtained head for the model with a bladed active disc operating with a smooth passive disc was H = 24.1 m, while, for the bladed active disc operating with a bladed passive disc, it was almost 1.7 times higher at H = 40.3 m. Additionally, the research identifies potential zones within the pump where energy transfer processes differ, providing insight into targeted design improvements. The findings provide valuable information on the optimization of RLP designs and their broader applicability.
Keywords: radial labyrinth machinery; low specific speed; circulation (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/24/6477/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/24/6477/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:24:p:6477-:d:1550398
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().