Rapid Decision-Making Tool for Electric Powertrain Sizing for Motorcycles during New Product Development
Mehmet Cagin Kirca (),
Andrew McGordon and
Truong Quang Dinh ()
Additional contact information
Mehmet Cagin Kirca: Warwick Manufacturing Group (WMG), University of Warwick, Coventry CV4 7AL, UK
Andrew McGordon: Warwick Manufacturing Group (WMG), University of Warwick, Coventry CV4 7AL, UK
Truong Quang Dinh: Warwick Manufacturing Group (WMG), University of Warwick, Coventry CV4 7AL, UK
Energies, 2024, vol. 17, issue 2, 1-27
Abstract:
As part of the intergovernmental and public interventions to reduce carbon dioxide emissions, there are no existing regulations to ban the sale of petrol motorcycles (PM), but it is expected that motorcycle regulations will follow car regulations with several years of delay. There is an emerging trend in motorcycle uptake, which will lead to new development projects with existing brands, and new brands, and will clearly increase the need for development tools that satisfies design challenges specific to electric motorcycles (EM) and electric powertrains. There is significant importance in motorcycle design to quantify the vehicle-level performance indicators and specifications, which are not limited to total vehicle mass, range, acceleration performance, and top speed. Those performance indicators should be quantified for different powertrain configurations and component selections to identify the most suitable configuration for the specific motorcycle development. In this paper, an innovative powertrain sizing approach is proposed to provide solutions for EMs against the design challenges specific to electric motorcycles. The innovative approach is to apply the practice of design space exploration (DSE) in resilient system design (RSD) to EM development. As a proof of concept, a case study of battery sizing is presented, in which a powertrain sizing tool is used to identify battery pack sizing requirements using requirement-based design (RBD), sensitivity analysis and DSE. The case study shows that the RBD approach allows EM product developers to identify a single solution, while DSE clearly demonstrates the trade-off between different configurations, taking multiple design variables into account. The tool prioritises high accessibility and high confidence with limited information at the early phases of electric motorcycle powertrain component sizing and selection.
Keywords: electric vehicles; powertrain; modelling; component sizing; range estimation (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/2/330/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/2/330/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:2:p:330-:d:1315805
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().