EconPapers    
Economics at your fingertips  
 

Application of Hydrodynamic Cavitation in the Disintegration of Aerobic Granular Sludge—Evaluation of Pretreatment Time on Biomass Properties, Anaerobic Digestion Efficiency and Energy Balance

Marcin Zieliński, Marcin Dębowski (), Joanna Kazimierowicz, Anna Nowicka and Magda Dudek
Additional contact information
Marcin Zieliński: Department of Environment Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Str. Oczapowskiego 5, 10-719 Olsztyn, Poland
Marcin Dębowski: Department of Environment Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Str. Oczapowskiego 5, 10-719 Olsztyn, Poland
Joanna Kazimierowicz: Department of Water Supply and Sewage Systems, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, 15-351 Bialystok, Poland
Anna Nowicka: Department of Environment Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Str. Oczapowskiego 5, 10-719 Olsztyn, Poland
Magda Dudek: Department of Environment Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Str. Oczapowskiego 5, 10-719 Olsztyn, Poland

Energies, 2024, vol. 17, issue 2, 1-17

Abstract: The use of aerobic granular sludge is a promising and future-proof solution for wastewater treatment. The implementation of this technology requires the development of efficient and cost-effective methods for the management of excess sludge. The aim of the research was to evaluate the effects of hydrodynamic cavitation on the efficiency of aerobic granular sludge digestion. Respirometric measurements were performed at a temperature of 38 °C and an initial organic load of 5.0 gVS/L. The changes in the properties of the pretreated biomass, the kinetics of methane fermentation, the amount and composition of the biogas produced, and an energetic evaluation of the process were carried out. A significant influence of hydrodynamic cavitation on the transfer of organic compounds into the dissolved phase was demonstrated. The degree of solubilisation was 37% for COD and 42% and for TOC. The efficiency of CH 4 production from the pretreated sludge reached a value of 496 ± 12 mL/gVS, which corresponds to an increase of 19.6% compared to the raw biomass. The influence of cavitation on the CH 4 content of the biogas was not observed. Strong correlations were found between the efficiency of anaerobic digestion and the concentration of dissolved organic compounds and the hydrodynamic cavitation time used. The gross energy yield was closely correlated with the amount of CH 4 . The highest comparable values of 3.12 Wh/gTS to 3.18 Wh/gTS were found in the variants in which the hydrodynamic cavitation (HC) time was between 15 min and 50 min. The highest net energy production of 2890 kWh/MgTS was achieved after 15 min of pretreatment.

Keywords: aerobic granular sludge; hydrodynamic cavitation; pretreatment; solubilisation degree; anaerobic digestion; methane (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/17/2/335/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/2/335/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:2:p:335-:d:1315904

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:17:y:2024:i:2:p:335-:d:1315904