EconPapers    
Economics at your fingertips  
 

Comprehensive Study on Microscopic Pore Structure and Displacement Mechanism of Tight Sandstone Reservoirs: A Case Study of the Chang 3 Member in the Weibei Oilfield, Ordos Basin, China

Ying Tang, Ruifei Wang () and Shuai Yin
Additional contact information
Ying Tang: College of Petroleum Engineering, Xi’an Shiyou University, Xi’an 710065, China
Ruifei Wang: College of Petroleum Engineering, Xi’an Shiyou University, Xi’an 710065, China
Shuai Yin: School of Earth Sciences and Engineering, Xi’an Shiyou University, Xi’an 710065, China

Energies, 2024, vol. 17, issue 2, 1-14

Abstract: With the continuous growth in global energy demand, research and development of unconventional oil and gas reservoirs have become crucial in the field of energy. This study focuses on the Chang 3 reservoir of the Yanchang Formation in the Ordos Basin, Weibei Oilfield, China. This reservoir is a typical tight sandstone reservoir, and its microscopic pore structure and displacement mechanism are essential for the efficient development of tight oil. However, the reservoir faces challenges such as complex microscopic pore structures and unclear displacement mechanisms, which hinder the efficient development of tight oil. In light of these challenges, through various studies including core observation, high-pressure mercury injection tests, water flooding experiments, oil-water two-phase relative permeability measurements, and stress sensitivity experiments, it was found that the Chang 3 reservoir exhibits strong microscopic heterogeneity. The pore-throat distribution characteristics mainly present two types: single peak and double peak, with the double peak type being predominant. The reservoir was classified and evaluated based on these characteristics. The improved injection ratio and properties enhance oil displacement efficiency, but an increase in irreducible water saturation has a negative impact on efficiency. The stress sensitivity of the reservoir fluctuates between weak and strong, with permeability being sensitive to net confining pressure. It is recommended to pay particular attention to the stress-sensitivity characteristics during reservoir development. The research results provide a scientific basis for the optimized development of tight oil reservoirs in this region, promote the sustainable development of unconventional oil and gas resources, and have significant theoretical and practical implications.

Keywords: microscopic pore structure; displacement mechanism; tight oil reservoir; Ordos Basin; Weibei Oilfield (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/17/2/370/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/2/370/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:2:p:370-:d:1317533

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:17:y:2024:i:2:p:370-:d:1317533