Optimal Control of Cascade Hydro Plants as a Prosumer-Oriented Distributed Energy Depot
Przemysław Ignaciuk () and
Michał Morawski
Additional contact information
Przemysław Ignaciuk: Institute of Information Technology, Lodz University of Technology, Politechniki 8 St., 93-590 Łódź, Poland
Michał Morawski: Institute of Information Technology, Lodz University of Technology, Politechniki 8 St., 93-590 Łódź, Poland
Energies, 2024, vol. 17, issue 2, 1-16
Abstract:
For political and economic reasons, renewable sources of energy have gained much importance in establishing a sustainable energy economy. By their very nature, however, their benefits depend on changeable weather conditions, and are unrelated to the generation and consumption patterns in industrial or home environments. This generation–dissipation disparity induces price fluctuations and threatens the stability of the supply system, yet can be alleviated by installing energy depots. While the classic methods of energy storage are hardly cost-effective, they may be supplemented, or replaced, by a distributed system of small-scale hydropower plants with ponds used as energy reservoirs. In this paper, following a rigorous mathematical argument, a dynamic model of a multi-cascade of hydropower plants is constructed, and a cost-optimal controller, with formally proven properties, is designed. On the one hand, it allows for an increase in the owners’ revenue by as much as 30% (compared to a free-flow state); on the other hand, it reduces the load fluctuation imposed on the grid and the legacy supply system. Moreover, the risk of floods and droughts downstream resulting from inappropriate use of the plants is averted.
Keywords: energy systems; networked systems; time-delay systems; hydropower plants; optimal control (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/2/469/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/2/469/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:2:p:469-:d:1321433
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().