EconPapers    
Economics at your fingertips  
 

Enhancing the Efficiency of Failure Recognition in Induction Machines through the Application of Deep Neural Networks

Wojciech Pietrowski () and Konrad Górny
Additional contact information
Wojciech Pietrowski: Institute of Electrical Engineering and Electronics, Faculty of Control, Robotics and Electrical Engineering, Poznan University of Technology, Piotrowo Street, No. 3a, 60-965 Poznan, Poland
Konrad Górny: Institute of Electrical Engineering and Electronics, Faculty of Control, Robotics and Electrical Engineering, Poznan University of Technology, Piotrowo Street, No. 3a, 60-965 Poznan, Poland

Energies, 2024, vol. 17, issue 2, 1-23

Abstract: The objective of the investigation was to increase the effectiveness of damage detection in the stator of the squirrel-cage induction machine. The analysis aimed to enhance the operational trustworthiness of the squirrel-cage induction machine by employing nonintrusive diagnostic methods based on a current signal and modern artificial intelligence methods. The authors of the study introduced a diagnostic technique for identifying multiphase interturn short circuits of stator winding. These short circuits are one of the most common faults in induction machines. The proposed method focusses on deriving a diagnostic signal from the phase-current waveforms of the machine. The noninvasive nature of the diagnostic technique presented is attributed to the application of the field model of electromagnetic phenomena to determine the diagnostic signal. For this purpose, a field model of a squirrel-cage machine was developed. The waveforms of phase currents obtained from the field model were used as input into an elaborated machine failure neural classifier. A deep neural network was used to develop a neural classifier. The effectiveness of the developed classifier has been experimentally verified, and the obtained results have been presented, concluded, and discussed. The scientific novelty presented in the article is the presentation of research results on the use of a neural classifier to detect damage in all phases of the stator winding at an early stage of its appearance. The features of this type of damage are very difficult to observe in signal waveforms such as a phase current or torque.

Keywords: induction machine; finite-element method; analysis of a current waveform; deep neural network; noninvasive diagnostics; multiphase interturn short circuits (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/17/2/476/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/2/476/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:2:p:476-:d:1321868

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:17:y:2024:i:2:p:476-:d:1321868