Performance Analysis of Floating Structures in Solar-Powered Desalination
Ajay Kumar Kaviti,
Siva Ram Akkala,
Michael Pohořelý () and
Vineet Singh Sikarwar
Additional contact information
Ajay Kumar Kaviti: Centre for Solar Energy Materials, Vallurupalli Nageswara Rao Vignana Jyothi Institute of Engineering &Technology (VNRVJIET), Hyderabad 500090, India
Siva Ram Akkala: Centre for Solar Energy Materials, Vallurupalli Nageswara Rao Vignana Jyothi Institute of Engineering &Technology (VNRVJIET), Hyderabad 500090, India
Michael Pohořelý: Department of Power Engineering, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic
Vineet Singh Sikarwar: Department of Power Engineering, University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic
Energies, 2024, vol. 17, issue 3, 1-15
Abstract:
Solar desalination employs direct sunrays in order to evaporate water vapor and collect the condensed water, making it an effective solution to combat water scarcity. In this experimental study, a solar still with a floating absorber is placed on the water, which acts as a heat absorber and is used to stop the heat conducting to the condensed water present in the still. Stainless steel, with thickness of 0.05 mm and dimensions of 500 mm × 500 mm, is used; this is coated with a Cr-Mn-Fe oxide nanocoating, and a wooden frame is attached to the sheet in order to maintain the balance, allowing the still to float at a constant depth on the water. The experiment is conducted on three different levels of water (3 cm, 4 cm, and 5 cm) using a conventional solar still (CSS) and a modified solar still (MSS) under the same climatic circumstances. The total distillate for depths of 3 cm, 4 cm, and 5 cm are 390 mL, 385 mL, and 385 mL, respectively for the MSS; the depths were 250 mL, 220 mL, and 205 mL, respectively, for the CSS. Upon comparison, the MSS performed better than the CSS by 56% at the 3 cm depth of water, 75% at the 4 cm depth of water, and 87% at the 5 cm depth of water. It was deduced that desalinated water for the MSS was 15.6% more cost-effective than for the CSS, and it was also 81% more cost-effective than packaged drinking water in India.
Keywords: Cr-Mn-Fe oxide; floating absorber; nano-coating; solar desalination; stainless steel (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/3/621/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/3/621/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:3:p:621-:d:1327768
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().