EconPapers    
Economics at your fingertips  
 

Predictive Modeling of Renewable Energy Purchase Prices Using Deep Learning Based on Polish Power Grid Data for Small Hybrid PV Microinstallations

Michał Pikus () and Jarosław Wąs
Additional contact information
Michał Pikus: Department of Applied Computer Science, Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH University of Krakow, al. Mickiewicza 30, 30-059 Krakow, Poland
Jarosław Wąs: Department of Applied Computer Science, Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH University of Krakow, al. Mickiewicza 30, 30-059 Krakow, Poland

Energies, 2024, vol. 17, issue 3, 1-12

Abstract: In the quest for sustainable energy solutions, predicting electricity prices for renewable energy sources plays a pivotal role in efficient resource allocation and decision making. This article presents a novel approach to forecasting electricity prices for renewable energy sources using deep learning models, leveraging historical data from the power system operator (PSE). The proposed methodology encompasses data collection, preprocessing, feature engineering, model selection, training, and evaluation. By harnessing the power of recurrent neural networks (RNNs) and other advanced deep learning architectures, the model captures intricate temporal relationships, weather patterns, and demand fluctuations that impact renewable energy prices. The study demonstrates the applicability of this approach through empirical analysis, showcasing its potential to enhance energy market predictions and aid in the transition to more sustainable energy systems. The outcomes underscore the importance of accurate renewable energy price predictions in fostering informed decision making and facilitating the integration of renewable sources into the energy landscape. As governments worldwide prioritize renewable energy adoption, this research contributes to the arsenal of tools driving the evolution towards a cleaner and more resilient energy future.

Keywords: AI; energy price forecasting; LSTM; DNN (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/17/3/628/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/3/628/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:3:p:628-:d:1328300

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:17:y:2024:i:3:p:628-:d:1328300