The Effects of Exterior Glazing on Human Thermal Comfort in Office Buildings
Bing Song,
Lujian Bai () and
Liu Yang
Additional contact information
Bing Song: College of Architecture, Xi’an University of Architecture and Technology, Xi’an 710055, China
Lujian Bai: College of Architecture and Civil Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
Liu Yang: College of Architecture, Xi’an University of Architecture and Technology, Xi’an 710055, China
Energies, 2024, vol. 17, issue 4, 1-16
Abstract:
As a major component of the building envelope, the energy-saving design of exterior windows is key to energy savings in office buildings. The conventional design of exterior windows mainly focused on their impact on heating and cooling energy but ignored the indoor thermal comfort problems caused by the direct solar radiation transmitted by windows and the fluctuation of their internal surface temperatures. This study analyzed the influence of exterior windows on the indoor thermal environment of office buildings by carrying out field experiments. The experiments were carried out in a typical office building in Xi’an during December and January. The impact of exterior windows on human thermal comfort was studied from two perspectives: longwave radiation from the surface of window glass and solar shortwave radiation. It was found that solar radiation was the main cause of temperature fluctuations on the internal surface of windows and created non-uniform thermal environments. The mean radiant temperature fluctuations in the near-window area could reach up to 7.8 °C due to outdoor solar radiation in winter. Solar radiation transmitted by windows directly affects thermal sensations. Since conventional thermal comfort models or indices underestimated the thermal sensations of occupants in the presence of solar radiation, the additional thermal loads caused by solar radiation needed to be taken into account. The allowable operative temperature range for maintaining thermal comfort should be reduced by 0.5 °C when occupants are exposed to solar radiation.
Keywords: thermal comfort; solar radiation; windows; office building (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/4/776/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/4/776/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:4:p:776-:d:1334381
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().