A Voltage-Aware P2P Power Trading System Aimed at Eliminating Unfairness Due to the Interconnection Location
Satoshi Takayama () and
Atsushi Ishigame
Additional contact information
Satoshi Takayama: Department of Electrical and Electronic Systems Engineering, Osaka Metropolitan University, Sakai City 599-8531, Japan
Atsushi Ishigame: Department of Electrical and Electronic Systems Engineering, Osaka Metropolitan University, Sakai City 599-8531, Japan
Energies, 2024, vol. 17, issue 4, 1-16
Abstract:
P2P power trading is necessary for efficiently using consumer electricity not subject to FIT. However, the execution rules for P2P power trading do not include restrictions on voltage, and there is a trade-off between the activation of the P2P power trading market through the mass introduction of PV and the optimization of the voltage of the power distribution system. In addition, there is a tendency for output curtailment to be biased toward consumers connected to the end of the grid. Since consumers cannot choose the interconnection location, there are concerns about unfairness. In this study, we investigate a new P2P model that includes voltage constraints for the execution rules of P2P power trading to avoid voltage deviation while ensuring benefits and fairness for the participants. In the proposed model, to increase the incentive to participate in the P2P power trading market, we consider compensating consumers who receive output curtailment signals due to voltage constraints. In addition, the profit is secured by differentiating the compensation cost unit price depending on the contract’s availability. A case study was conducted on this model using the IEEE 33 bus system. The results show that the proposed model is superior.
Keywords: P2P power trading; distribution network; voltage regulation; photovoltaic generation (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/4/841/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/4/841/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:4:p:841-:d:1337029
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().