From Local Energy Communities towards National Energy System: A Grid-Aware Techno-Economic Analysis
Cédric Terrier (),
Joseph René Hubert Loustau,
Dorsan Lepour and
François Maréchal
Additional contact information
Cédric Terrier: Department of Industrial Processes and Energy Systems Engineering, Institute of Mechanical Engineering, École Polytechnique Fédérale de Lausanne, Rue de l’Industrie 17, 1950 Sion, Switzerland
Joseph René Hubert Loustau: Department of Industrial Processes and Energy Systems Engineering, Institute of Mechanical Engineering, École Polytechnique Fédérale de Lausanne, Rue de l’Industrie 17, 1950 Sion, Switzerland
Dorsan Lepour: Department of Industrial Processes and Energy Systems Engineering, Institute of Mechanical Engineering, École Polytechnique Fédérale de Lausanne, Rue de l’Industrie 17, 1950 Sion, Switzerland
François Maréchal: Department of Industrial Processes and Energy Systems Engineering, Institute of Mechanical Engineering, École Polytechnique Fédérale de Lausanne, Rue de l’Industrie 17, 1950 Sion, Switzerland
Energies, 2024, vol. 17, issue 4, 1-16
Abstract:
Energy communities are key actors in the energy transition since they optimally interconnect renewable energy capacities with the consumers. Despite versatile objectives, they usually aim at improving the self-consumption of renewable electricity within low-voltage grids to maximize revenues. In addition, energy communities are an excellent opportunity to supply renewable electricity to regional and national energy systems. However, effective price signals have to be designed to coordinate the needs of the energy infrastructure with the interests of these local stakeholders. The aim of this paper is to demonstrate the integration of energy communities at the national level with a bottom–up approach. District energy systems with a building scale resolution are modeled in a mixed-integer linear programming problem. The Dantzig–Wolfe decomposition is applied to reduce the computational time. The methodology lies within the framework of a renewable energy hub, characterized by a high share of photovoltaic capacities. Both investments into equipment and its operation are considered. The model is applied on a set of five typical districts and weather locations representative of the Swiss building stock. The extrapolation to the national scale reveals a heterogeneous photovoltaic potential throughout the country. Present electricity tariffs promote a maximal investment into photovoltaic panels in every region, reaching an installed capacity of 67.2 GW and generating 80 TWh per year. Placed in perspective with the optimal PV capacity forecast at 15.4 GW p e a k at the national level, coordinated investment between local and national actors is needed to prevent dispensable expenses. An uncoordinated design is expected to increase the total costs for residential energy systems from 12% to 83% and curtails 48% of local renewable electricity.
Keywords: energy communities; renewable energy hub; MILP; multi-objective optimization; Dantzig–Wolfe decomposition (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/4/910/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/4/910/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:4:p:910-:d:1339401
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().