EconPapers    
Economics at your fingertips  
 

Transmission Line Icing Prediction Based on Dynamic Time Warping and Conductor Operating Parameters

Feng Wang, Hongbo Lin () and Ziming Ma
Additional contact information
Feng Wang: College of Civil Engineering and Architecture, China Three Gorges University, Yichang 443002, China
Hongbo Lin: College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443002, China
Ziming Ma: College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443002, China

Energies, 2024, vol. 17, issue 4, 1-14

Abstract: Aiming to improve on the low accuracy of current transmission line icing prediction models and ignoring the objective law of icing of transmission lines, a transmission line icing prediction model considering the effect of transmission line tension on the bundle of icing thickness is proposed, based on a convolutional neural network (CNN) and bidirectional gated recurrent unit (BiGRU). Firstly, the finite element calculation model of the conductor and insulator system was established, and the change rule between transmission line tension and icing thickness was studied. Then, the convolutional neural network and bidirectional gated recurrent unit were used to construct a transmission line icing thickness prediction model The model incorporated a weighted fusion of soft−dynamic time warping (Soft−DTW) and the icing change rule as the loss function. Optimal weights were determined through the utilization of the grid search algorithm and cross−validation, contributing to an enhancement of the model’s generalization capabilities and a reduction in prediction errors. The results indicate that the proposed prediction model can consider the impact of line operating parameters, avoiding the shortcomings of prediction results conflicting with actual physical laws. Compared with traditional non−mechanical models, the proposed model showed reductions in root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) by 0.26–0.51%, 0.24–0.44%, and 5.77–13.33%, respectively, while the coefficient of determination (R2) increased by 0.07–0.13.

Keywords: icing prediction; objective law of icing; dynamic time warping; bidirectional gate recurrent unit; convolutional neural networks (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/17/4/945/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/4/945/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:4:p:945-:d:1340767

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:17:y:2024:i:4:p:945-:d:1340767