EconPapers    
Economics at your fingertips  
 

Effect of Soil Properties and Powertrain Configuration on the Energy Consumption of Wheeled Electric Agricultural Robots

Klaus Kivekäs () and Antti Lajunen
Additional contact information
Klaus Kivekäs: Department of Agricultural Sciences, University of Helsinki, 00790 Helsinki, Finland
Antti Lajunen: Department of Agricultural Sciences, University of Helsinki, 00790 Helsinki, Finland

Energies, 2024, vol. 17, issue 4, 1-35

Abstract: Agricultural emissions can be significantly reduced with smart farming, which includes moving away from large conventional tractors to fleets of compact wheeled electric robots. This paper presents a novel simulation modeling approach for an ATV-sized wheeled electric agricultural robot pulling an implement on deformable terrain. The 2D model features a semiempirical tire–soil interaction model as well as a powertrain model. Rear-wheel drive (RWD), front-wheel drive (FWD), and all-wheel drive (AWD) versions were developed. Simulations were carried out on two different soils to examine the energy consumption and tractive performance of the powertrain options. The results showed that energy consumption varies the least with AWD. However, RWD could provide lower energy consumption than AWD with light workloads due to lower curb weight. However, with the heaviest workload, AWD had 7.5% lower energy consumption than RWD. FWD was also found to be capable of lower energy consumption than AWD on light workloads, but it was unsuited for heavy workloads due to traction limitations. Overall, the results demonstrated the importance of taking the terrain characteristics and workload into account when designing electric agricultural robots. The developed modeling approach can prove useful for designing such machines and their fleet management.

Keywords: agriculture; tire–soil model; simulation; energy consumption; powertrain; robot (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/17/4/966/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/4/966/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:4:p:966-:d:1341364

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:17:y:2024:i:4:p:966-:d:1341364