EconPapers    
Economics at your fingertips  
 

Co-Pyrolysis of Woody Biomass and Oil Shale—A Kinetics and Modelling Study

Alejandro Lyons Ceron, Richard Ochieng, Shiplu Sarker (), Oliver Järvik and Alar Konist
Additional contact information
Alejandro Lyons Ceron: Department of Energy Technology, Tallinn University of Technology, 19086 Tallinn, Estonia
Richard Ochieng: Department of Manufacturing and Civil Engineering, Faculty of Engineering, Norwegian University of Science and Technology, 2815 Gjøvik, Norway
Shiplu Sarker: Department of Manufacturing and Civil Engineering, Faculty of Engineering, Norwegian University of Science and Technology, 2815 Gjøvik, Norway
Oliver Järvik: Department of Energy Technology, Tallinn University of Technology, 19086 Tallinn, Estonia
Alar Konist: Department of Energy Technology, Tallinn University of Technology, 19086 Tallinn, Estonia

Energies, 2024, vol. 17, issue 5, 1-18

Abstract: The co-pyrolysis of biomass and fossil fuels has been the subject of studies on sustainable energy. Co-feeding oil shale with woody biomass can contribute to a transition into carbon neutrality. The present study analysed the thermal decomposition behaviour of oil shale and biomass blends (0:1, 3:7, 1:1, 7:3, 9:1, and 1:0) through thermogravimetric analysis (TGA) at 80–630 °C with a heating rate of 10 °C/min in CO 2 and N 2 atmospheres. A comparison of theoretical and experimental residual mass yields of oil shale–biomass mixtures indicated no significant interactions between the fuels. The blends contributed to a decrease of up to 34.4 wt% in solid residues compared to individual pyrolysis of oil shale, and the TGA curves were shifted from up to 10 °C to a lower temperature when the biomass ratio increased. The use of a CO 2 atmosphere resulted in the production of solid residues, comparable to the one obtained with the N 2 atmosphere. CO 2 atmosphere can be used in oil shale–biomass co-pyrolysis, without affecting the decomposition process or increasing the yield of residues. A kinetic model method is proposed based on TGA data at 10, 20, and 30 °C/min. The apparent activation energies for a temperature range of 200–520 °C were in the order of 139, 155, 164, 197, 154, and 167 kJ/mol for oil shale–biomass 0:1, 3:7, 1:1, 7:3, 9:1, and 1:0 blends, respectively. From the isoconversional kinetic analysis, a two-stage pyrolysis was observed, which separated biomass and oil shale pyrolysis. A simulation of biomass and oil shale co-pyrolysis was conducted in Aspen Plus ® using TGA-derived kinetic data. The model prediction resulted in a close match with the experimental thermogravimetric data with absolute errors from 1.75 to 3.78%, which highlights the relevance of TGA analysis in simulating co-pyrolysis processes.

Keywords: co-pyrolysis; kinetics; modelling; oil shale; woody biomass (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/17/5/1055/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/5/1055/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:5:p:1055-:d:1344511

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:1055-:d:1344511