Deep Learning Algorithm for Solving Interval of Weight Coefficient of Wind–Thermal–Storage System
Yanchen Liu and
Minfang Peng ()
Additional contact information
Yanchen Liu: College of Electrical and Information Engineering, Hunan University, Changsha 410082, China
Minfang Peng: College of Electrical and Information Engineering, Hunan University, Changsha 410082, China
Energies, 2024, vol. 17, issue 5, 1-18
Abstract:
Under the premise of ensuring the safe and stable operation of a wind–thermal–storage power system, this paper proposes an optimization model aimed at improving its overall economic efficiency and effectively reducing the peak-to-valley load difference. The model transforms the multi-objective optimization problem to solve a feasible interval of weight coefficients. We introduce a novel fusion model, where a Convolutional Neural Network (CNN) is melded with a Long Short-Term Memory Network (LSTM) to form the target network structure. Additionally, for datasets with limited samples, we incorporate a Self-Attention Mechanism (SAM) into the Model-Agnostic Meta-Learning (MAML). Ultimately, we build an MAML-SAM-CNN-LSTM network model to solve the interval of weight coefficients. An arithmetic validation of a modified IEEE 30-node system demonstrates that the MAML-SAM-CNN-LSTM network proposed in this paper can adeptly solve the feasible intervals of weight coefficients in the optimization model of the wind-thermal storage system. This is achieved under the constraints of the specified wind-thermal storage power system operation indexes. The evaluation indexes of the network model, including its accuracy, precision, recall, and F1 score, all exceed 98.72%, 98.57%, 98.30%, and 98.57%, respectively. This denotes a superior performance compared to the other three network models, offering an effective reference for optimizing decision-making and facilitating the enhanced realization of multi-objective, on-demand scheduling in the wind-thermal storage power system.
Keywords: MAML-SAM-CNN-LSTM network; deep learning; wind–thermal–storage system (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/5/1082/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/5/1082/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:5:p:1082-:d:1345058
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().