ANN-LSTM-A Water Consumption Prediction Based on Attention Mechanism Enhancement
Xin Zhou,
Xin Meng () and
Zhenyu Li
Additional contact information
Xin Zhou: School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong 723001, China
Xin Meng: School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong 723001, China
Zhenyu Li: School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong 723001, China
Energies, 2024, vol. 17, issue 5, 1-16
Abstract:
To reduce the energy consumption of domestic hot water (DHW) production, it is necessary to reasonably select a water supply plan through early predictions of DHW consumption to optimize energy consumption. However, the fluctuations and intermittence of DHW consumption bring great challenges to the prediction of water consumption. In this paper, an ANN-LSTM-A water quantity prediction model based on attention mechanism (AM) enhancement is improved. The model includes an input layer, an AM layer, a hidden layer, and an output layer. Based on the combination of artificial neural network (ANN) and long short-term memory (LSTM) models, an AM is incorporated to address the issue of the traditional ANN model having difficulty capturing the long-term dependencies, such as lags and trends in time series, to improve the accuracy of the DHW consumption prediction. Through comparative experiments, it was found that the root mean square error of the ANN-LSTM-A model was 15.4%, 13.2%, and 13.2% lower than those of the ANN, LSTM, and ANN-LSTM models, respectively. The corresponding mean absolute error was 17.9%, 11.5%, and 8% lower than those of the ANN, LSTM, and ANN-LSTM models, respectively. The results showed that the proposed ANN-LSTM-A model yielded better performances in predicting DHW consumption than the ANN, LSTM, and ANN-LSTM models. This work provides an effective reference for the reasonable selection of the water supply plan and optimization of energy consumption.
Keywords: water consumption prediction; artificial neural network (ANN); long short-term memory (LSTM); attention mechanism (AM) (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/5/1102/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/5/1102/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:5:p:1102-:d:1345730
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().