EconPapers    
Economics at your fingertips  
 

Production of CH 4 /C 3 H 8 (85/15 vol%) Hydrate in a Lab-Scale Unstirred Reactor: Quantification of the Promoting Effect Due to the Addition of Propane to the Gas Mixture

Alberto Maria Gambelli (), Giovanni Gigliotti and Federico Rossi
Additional contact information
Alberto Maria Gambelli: Department of Civil and Environmental Engineering, University of Perugia, Via G. Duranti 93, 06125 Perugia, Italy
Giovanni Gigliotti: Department of Civil and Environmental Engineering, University of Perugia, Via G. Duranti 93, 06125 Perugia, Italy
Federico Rossi: Engineering Department, University of Perugia, Via G. Duranti 93, 06125 Perugia, Italy

Energies, 2024, vol. 17, issue 5, 1-14

Abstract: By itself, propane is capable to form hydrates at extremely contained pressures, if compared with the values typical of “guests” such as methane and carbon dioxide. Therefore, its addition in mixtures with gases such as those previously mentioned is expected to reduce the pressure required for hydrate formation. When propane is mixed with carbon dioxide, the promoting effect cannot be observed since, due to their molecular size, these two molecules cannot fit in the same unit cell of hydrates. Therefore, each species produces hydrates independently from the other, and the beneficial effect is almost completely prevented. Conversely, if propane is mixed with methane, the marked difference in size, together with the capability of methane molecules to fit in the smaller cages of both sI and sII structures, will allow to form hydrates in thermodynamic conditions lower than those required for pure methane hydrates. This study aims to experimentally characterize such a synergistic and promoting effect, and to quantity it from a thermodynamic point of view. Hydrates were formed and dissociated within a silica porous sediment and the results were compared with the phase boundary equilibrium conditions for pure methane hydrates, defined according to experimental values available elsewhere in the literature. The obtained results were finally explained in terms of cage occupancy.

Keywords: binary gas hydrates; methane; propane; cage occupancy (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/17/5/1104/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/5/1104/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:5:p:1104-:d:1345806

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:1104-:d:1345806