Simulation and Performance Analysis of an Air-Source Heat Pump and Photovoltaic Panels Integrated with Service Building in Different Climate Zones of Poland
Agata Ołtarzewska () and
Dorota Anna Krawczyk ()
Additional contact information
Agata Ołtarzewska: Doctoral School of Bialystok University of Technology, Bialystok University of Technology, 15-351 Bialystok, Poland
Dorota Anna Krawczyk: Department of Sustainable Construction and Building Systems, Bialystok University of Technology, 15-351 Bialystok, Poland
Energies, 2024, vol. 17, issue 5, 1-17
Abstract:
In recent years, due to the global energy crisis, the idea of a photovoltaic-assisted air-source heat pump (PV-ASHP) has become increasingly popular. This study provides a simulation in TRNSYS and the analysis of the use of a PV-ASHP system in a service building in different climate zones of Poland. For each of the six cities—Kolobrzeg, Poznan, Krakow, Warsaw, Mikolajki, and Suwalki, the effect of changing five system parameters (area, efficiency, type, and location of photovoltaic panels, and the use of a heat pump control strategy) on the amount of energy generated and consumed was determined. We also estimated the extent to which the photovoltaic panels could cover the energy requirements for the heat pump (HP) operation and the system could provide thermal comfort in the service room. Finally, a simplified analysis of the operating costs and capital expenditures was made. The results highlighted the issue of the incoherence of renewable energy sources and the need to store surplus energy under Polish climatic conditions. Abandoning the HP control strategy increased energy consumption by 36–62%, depending on the location and Variant, while the change in the place of the PV panels on the roof slope reduced energy generation by 16–22%. When applied to an ASHP in a service building, the use of PV panels to power it seems to be cost-effective.
Keywords: heat pump; photovoltaics; heating; cooling; energy demand; renewable energy; TRNSYS (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/5/1182/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/5/1182/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:5:p:1182-:d:1349631
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().