Pressure Transient Analysis on the Condenser of the HPR1000 Nuclear Power Unit
Chuntian Lu,
Jianjun Yang () and
Qiang Zhang
Additional contact information
Chuntian Lu: Hebei Branch, China Nuclear Power Engineering Co., Ltd., Shijiazhuang 050021, China
Jianjun Yang: Hebei Branch, China Nuclear Power Engineering Co., Ltd., Shijiazhuang 050021, China
Qiang Zhang: Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Chongqing University, Chongqing 400044, China
Energies, 2024, vol. 17, issue 5, 1-12
Abstract:
The transient characteristics of pressure in the condenser under fault conditions have a crucial impact on the safe operation of the entire nuclear power plant. In order to ascertain whether the condenser pressure of a HPR1000 nuclear power unit meets the requirements of the steam generator, this paper establishes a mathematical model of the condenser, along with the connected steam turbine bypass steam system and circulating water system, based on Apros. The accuracy of the simulation model is verified by comparing the coasting curve of the circulating water pump with the flow change curve under the pump-tripping condition in Apros. Under the initial CCR condition and the half-side operating condition of the condenser, simulation analyses were conducted for two transient sequences involving the loss of normal external power and the simultaneous tripping of two circulating water pumps. The corresponding changes of pressure in the condenser under the transient sequence were obtained. The study reveals that, under different initial conditions and transient sequences, the condenser pressure of the unit can meet the requirements of a 12 s steam discharge to the condenser before the internal pressure of the condenser reaches the “unavailable” set value when the turbine bypass system is under the fault condition. The research findings of this paper can provide reference data for the design, commissioning, and operation of subsequent HPR1000 nuclear power plants.
Keywords: condenser; fault conditions; mathematical model; transient pressure analysis (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/5/1210/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/5/1210/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:5:p:1210-:d:1350445
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().