Systematic Design and Implementation Method of Battery-Energy Comprehensive Management Platform in Charging and Swapping Scenarios
Lianling Ren (),
Wei Liao and
Jun Chen
Additional contact information
Lianling Ren: Institute of Engineering, Academy of Military Science, Beijing 100083, China
Wei Liao: Institute of Engineering, Academy of Military Science, Beijing 100083, China
Jun Chen: Institute of Engineering, Academy of Military Science, Beijing 100083, China
Energies, 2024, vol. 17, issue 5, 1-13
Abstract:
Batteries are one of the most crucial energy storage devices today, and battery-energy management technology has an extremely significant impact on the performance and lifespan of batteries. The traditional design approach for battery-energy management platforms often neglects considerations for charging and discharging scenarios. Additionally, functional modules are designed independently, leading to incompatibility issues between hardware and control units, thereby limiting the system’s performance. To address these challenges and enhance system coordination, this paper proposes a systematic design and implementation method for a battery-energy comprehensive management platform applied in charging and swapping scenarios. The method consists of four parts: hardware design, a dynamic load charging-balance control strategy, a composite micro-source hierarchical coordination control strategy, and a system emergency-response and protection strategy. The proposed method has been successfully applied to a design and has been used to build a battery-energy comprehensive management platform. Finally, through experiments, it has been demonstrated that this system can achieve energy scheduling, battery-energy balance, mode switching, and fault protection in a stable and reliable manner.
Keywords: battery; energy storage; energy management; energy balance; performance and lifespan; droop control; hierarchical scheduling; charging and swapping scenarios (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/5/1237/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/5/1237/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:5:p:1237-:d:1351481
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().