EconPapers    
Economics at your fingertips  
 

A Unified Data Profile for Microgrid Loads, Power Electronics, and Sustainable Energy Management with IoT

Adam Milczarek () and Kamil Możdżyński
Additional contact information
Adam Milczarek: Institute of Control and Industrial Electronics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland
Kamil Możdżyński: Institute of Control and Industrial Electronics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland

Energies, 2024, vol. 17, issue 6, 1-16

Abstract: Controllable devices in a classical centralized grid work independently, providing desired functionalities for the owner only, making grid stability and efficient energy management challenging. Therefore, the dynamically developing communication infrastructure has been crucial in improving local energy management and stability, introducing the Internet of Things and, finally, creating micro- or smart grids. Communication technology already allows for exchanging data and information with high bandwidth in practical industrial and grid applications. However, considering the increasing number of electrical devices with different purposes, parameters, and possibilities to work as an energy source or storage, the challenge is device profile standardization, especially for power electronics devices. As many devices as possible should be able to exchange information with the grid operator or local area/home energy management device, like industrial agents, energy routers, or smart transformers. The number and types of parameters, outputs, and input signals available in the devices from the communication point of view are significantly different, making it extremely difficult to apply the advanced energy management algorithm. Therefore, the unified data profile for modern loads was developed and discussed. The proposed device model was standardized, including mandatory information about the device’s work and parameters, with the possibility of reading the control commands from the supervisor device. The proposed unified model was studied in simulation research, integrating self-balanced and self-control areas.

Keywords: load profile; microgrid; energy management; unified data profile; Internet of Things; self-balanced grid; distributed generation (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/17/6/1277/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/6/1277/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:6:p:1277-:d:1352744

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:17:y:2024:i:6:p:1277-:d:1352744