EconPapers    
Economics at your fingertips  
 

Usage of Microencapsulated Phase-Change Materials to Improve the Insulating Parameters of the Walls of Refrigerated Trailers

Konrad Zdun (), Piotr Robakowski and Tadeusz Uhl
Additional contact information
Konrad Zdun: Department of Robotics and Mechatronics, Faculty of Mechanical Engineering and Robotics, AGH University of Krakow, al. A. Mickiewicza 30, 30-059 Krakow, Poland
Piotr Robakowski: Department of Robotics and Mechatronics, Faculty of Mechanical Engineering and Robotics, AGH University of Krakow, al. A. Mickiewicza 30, 30-059 Krakow, Poland
Tadeusz Uhl: Department of Robotics and Mechatronics, Faculty of Mechanical Engineering and Robotics, AGH University of Krakow, al. A. Mickiewicza 30, 30-059 Krakow, Poland

Energies, 2024, vol. 17, issue 6, 1-17

Abstract: Climate change is forcing action to reduce energy consumption and greenhouse gas emissions. An extremely important area of high-polluting energy consumption is material transport and, within this, the transport of chilled goods, including deep-frozen goods, is an important contributor. Phase change materials (PCMs) can have an important role in reducing energy consumption for the transport of chilled goods, but the current state of knowledge is not sufficient to bring the solution into popular use. This article includes a study of the effect of implementing microencapsulated PCM (mPCM) in polyurethane foam (PU) on the insulation performance of refrigerated trailer walls in low-temperature transport. In this research, mPCM was used, characterised by a phase-change heat in the range of 170–195 k J k g and a phase change temperature in the range from −10 °C to −9 °C. The studies performed show the potential of using mPCMs to improve the insulation performance of the walls of refrigerated trailers. Containing mPCM in the amount of 5.0% wt. placed throughout the entire volume of the wall can improve thermal conductivity of the wall for up to 15% in peak and 4.5% (0.2792 W m 2 K without mPCM and 0.2665 W m 2 K with mPCM) in the phase change temperature range. Out of the range of phase change temperatures, the thermal conductivity of the wall with mPCM is worse for 2.72% than in walls without PCM. Problems that need to be tackled were also identified, before the solution can be put into everyday use, i.e., finding the technology to increase the proportion of mPCMs relative to PU.

Keywords: refrigerated trailer; phase change materials (PCMs); PU foams; latent heat storage; thermal energy storage; cold storage (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/17/6/1439/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/6/1439/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:6:p:1439-:d:1358338

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:17:y:2024:i:6:p:1439-:d:1358338