Optimization Control Strategy for Transition Season Blinds Balancing Daylighting, Thermal Discomfort, and Energy Efficiency
Guipan Wang,
Ying Yu () and
Chenfei Zhang
Additional contact information
Guipan Wang: School of Building Services Science and Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
Ying Yu: School of Mechanical and Electrical Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
Chenfei Zhang: School of Building Services Science and Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
Energies, 2024, vol. 17, issue 7, 1-21
Abstract:
Natural lighting in office buildings is often affected by excessive solar heat gain and discomfort glare, and the transitional seasons are no exception. Therefore, addressing the issue of natural lighting in buildings has always been a challenge in developing shading control strategies. This study designed a model-based calculation method for shading blind control indicators. The method combines existing physical models for sky conditions, solar radiation, heat transfer, thermal comfort, glare, and illuminance calculations and incorporates modifications and additions. Additionally, an equivalent energy-saving model for shading was established. A shading blind control strategy balancing indoor light and the thermal environment with energy savings during transitional seasons was proposed. In transitional seasons, this method can eliminate 100% of glare, reduce discomfort illuminance duration by 81.3% and heat discomfort duration by 87.5% and save 81.3% of lighting energy consumption when air conditioning is used. By comparing the simulation results of an office building in Xi’an with the results obtained from this calculation method, the absolute error percentage was found to be 6.83%, verifying the reliability of the calculation method. Finally, the proposed control strategy was compared with common methods such as no blinds, end-angle control, and fixed-angle control to evaluate its performance in terms of daylighting, thermal comfort, and energy savings. The results showed that the control strategy proposed in this study has significant advantages with respect to various performance indicators.
Keywords: solar radiation; shading blinds; optimal control; indoor environmental quality (IEQ); energy saving (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/7/1543/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/7/1543/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:7:p:1543-:d:1362502
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().