Integrating Compressed CO 2 Energy Storage in an Integrated Energy System
Qingxi Huang,
Yongxin Song,
Qie Sun,
Xiaohan Ren and
Wei Wang ()
Additional contact information
Qingxi Huang: Institute for Advanced Technology, Shandong University, Jinan 250061, China
Yongxin Song: Institute for Advanced Technology, Shandong University, Jinan 250061, China
Qie Sun: Institute for Advanced Technology, Shandong University, Jinan 250061, China
Xiaohan Ren: Institute of Thermal Science and Technology, Shandong University, Jinan 250061, China
Wei Wang: Institute for Advanced Technology, Shandong University, Jinan 250061, China
Energies, 2024, vol. 17, issue 7, 1-21
Abstract:
The integration of an energy storage system into an integrated energy system (IES) enhances renewable energy penetration while catering to diverse energy loads. In previous studies, the adoption of a battery energy storage (BES) system posed challenges related to installation capacity and capacity loss, impacting the technical and economic performance of the IES. To overcome these challenges, this study introduces a novel design incorporating a compressed CO 2 energy storage (CCES) system into an IES. This integration mitigates the capacity loss issues associated with BES systems and offers advantages for configuring large-scale IESs. A mixed integer linear programming problem was formulated to optimize the configuration and operation of the IES. With an energy storage capacity of 267 MWh, the IES integrated with a CCES (IES–CCES) system incurred an investment cost of MUSD 161.9, slightly higher by MUSD 0.5 compared to the IES integrated with a BES (IES–BES) system. When not considering the capacity loss of the BES system, the annual operation cost of the IES–BES system was 0.5 MUSD lower than that of the IES–CCES system, amounting to MUSD 766.6. However, considering the capacity loss of the BES system, this study reveals that the operation cost of the IES–BES system surpassed that of the IES–CCES system beyond the sixth year. Over the 30-year lifespan of the IES, the total cost of the IES–CCES system was MUSD 4.4 lower than the minimum total cost of the IES–BES system.
Keywords: compressed CO 2 energy storage system; integrated energy system; battery energy storage system; optimization (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/7/1570/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/7/1570/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:7:p:1570-:d:1363799
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().