Muti-Filler Composites Reinforced with Multiwalled Carbon Nanotubes and Chopped Carbon Fibers for the Bipolar Plate of Fuel Cells
Huili Wei,
Guofeng Chang,
Sichuan Xu and
Jinling Liu ()
Additional contact information
Huili Wei: College of Automotive Engineering, Tongji University, Shanghai 201804, China
Guofeng Chang: College of Automotive Engineering, Tongji University, Shanghai 201804, China
Sichuan Xu: College of Automotive Engineering, Tongji University, Shanghai 201804, China
Jinling Liu: College of Automotive Engineering, Tongji University, Shanghai 201804, China
Energies, 2024, vol. 17, issue 7, 1-16
Abstract:
To improve the conductivity and flexural strength of bipolar plates for proton-exchange membrane fuel cells, multi-filler-reinforced composites were prepared using graphite, multiwalled carbon nanotubes (MWCNTs), chopped carbon fibers (CCFs), and phenolic resin (PF). The effects of CCF content (0–6 wt.%) and MWCNT content (0–8 wt.%) on the flexural strength, electrical conductivity, interfacial contact resistance (ICR), density, hydrophobicity, and corrosion behavior of the composites were investigated. Results showed that the addition of a small number of CCFs (≤4 wt.%) effectively improved the flexural strength but slightly reduced the electrical conductivity and increased the ICR of the graphite/PF/CCF composites. Further addition of MWCNTs (≤6 wt.%) significantly improved the electrical conductivity and ICR of the graphite/PF/CCF/MWCNT composites, while maintaining high flexural strength. When the composites were filled with 4 wt.% CCFs and 2 wt.% MWCNTs, their electrical conductivity, flexural strength, ICR under 1.38 MPa, and contact angle were 272.8 S/cm, 43.1 MPa, 1.19 mΩ·cm 2 , and 101.5°, respectively. Compared to unreinforced composites, the electrical conductivity was reduced by 27.2%, the flexural strength was increased by 65.1%, and the composite possessed favorable hydrophobicity as well as corrosion behavior. This work reveals that CCFs and MWCNTs can effectively cooperate to improve composites’ electrical and flexural strength properties.
Keywords: fuel cell; multi-filler composites; carbon fibers; multiwalled carbon nanotubes; electrical conductivity; flexural strength; interfacial contact resistance (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/7/1603/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/7/1603/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:7:p:1603-:d:1364872
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().