FEM Simulation of Fault Reactivation Induced with Hydraulic Fracturing in the Shangluo Region of Sichuan Province
Yujie He and
Yanyan Li ()
Additional contact information
Yujie He: Faculty of Urban Construction, Beijing University of Technology, Beijing 100124, China
Yanyan Li: Faculty of Urban Construction, Beijing University of Technology, Beijing 100124, China
Energies, 2024, vol. 17, issue 7, 1-18
Abstract:
Hydraulic fracturing operations possess the capacity to induce the reactivation of faults, increasing the risk of fault slip and seismic activity. In this study, a coupled poroelastic model is established to characterize the distribution and movement of fluids within rock formations in the Shangluo region of Sichuan province, China. The effect of hydraulic fracturing projects on the variations of pore pressure and Coulomb effective stress within a high-permeability fault is analyzed. The potential fault-slip mechanism is investigated. The results show that the fault plays different roles for fluid movement, including the barrier, fluid transport channel, and diversion channel, which is related to injection–production schemes. In addition, fluid injection leads to a high probability of fault reactivation. We find that increasing the injection time and fluid injection rate can result in larger slip distances. The injection production scenarios influence the fault-slip mechanism, resulting in a normal fault or reverse fault. However, the arrangement of production wells around the injection can effectively reduce the risk of fault reactivation.
Keywords: fluid–solid coupling; Coulomb failure stress; hydraulic fracturing; seismic simulation; fault slip (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/7/1614/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/7/1614/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:7:p:1614-:d:1365590
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().